22 resultados para CATALYZED COPOLYMERIZATION
Resumo:
In order to match the more stringent environmental regulations, heterogenization of traditional homogeneous processes is one of the main challenges of the modern chemical industry. Great results have been achieved in the fields of petrochemicals and base chemicals, whereas in fine chemical industry most of the synthetic procedures are based on multistep processes catalyzed by homogeneous catalysts mainly used in stoichiometric amounts. In the fine chemicals manufacture not so much efforts have been devoted to the investigation of suitable solid catalysts for the development of greener processes, then this sector represent a very attractive field of research. In this context, the present work deals with the extensive investigation of the possibility to heterogenize existing processes, in particular two different classes of reactions have been studied: alkylation of aromatic and heteroaromatic compounds and selective oxidation of aromatic alcohols. Traditional solid acid catalysts, such as zeolites, clays and alumina have been tested in the gas phase alkylation of 1,2-methylendioxybenzene, core building block of many drugs, pesticides and fragrances. The observed reactivity were clarified through a deep FTIR investigation complemented by ab initio calculation. The same catalysts were tested in the gas phase isopropylation of thiophene with the aim of clearly attribute the role of the reaction parameters in the reaction proceeding and verify the possibility to enhance the selectivity of one of the two possible isomers. Finally various Au/CeO2 catalysts were tested in the synthesis of benzaldehyde and piperonal, two aldehydes largely employed in the manufacture of fine chemical products, through liquid phase oxidation of the corresponding alcohols in very mild conditions.
Resumo:
This thesis deals with the transformation of ethanol into acetonitrile. Two approaches are investigated: (a) the ammoxidation of ethanol to acetonitrile and (b) the amination of ethanol to acetonitrile. The reaction of ethanol ammoxidation to acetonitrile has been studied using several catalytic systems, such as vanadyl pyrophosphate, supported vanadium oxide, multimetal molibdates and antimonates. The main conclusions are: (I) The surface acidity must be very low, because acidity catalyzes several undesired reactions, such as the formation of ethylene, and of heavy compounds as well. (II) Supported vanadium oxide is the catalyst showing the best catalytic behaviour, but the role of the support is of crucial importance. (III) Both metal molybdates and antimonates show interesting catalytic behaviour, but are poorly active, and probably require harder conditions than those used with the V oxide-based catalysts. (IV) One key point in the reaction network is the rate of reaction between acetaldehyde (the first intermediate) and ammonia, compared to the parallel rates of acetaldehyde transformation into by-products (CO, CO2, HCN, heavy compounds). Concerning the non-oxidative process, two possible strategies are investigated: (a) the ethanol ammonolysis to ethylamine coupled with ethylamine dehydrogenation, and (b) the direct non-reductive amination of ethanol to acetonitrile. Despite the good results obtained in each single step, the former reaction does not lead to good results in terms of yield to acetonitrile. The direct amination can be catalyzed with good acetonitrile yield over catalyst based on supported metal oxides. Strategies aimed at limiting catalyst deactivation have also been investigated.
Resumo:
During the last fifteen years organocatalysis emerged as a powerful tool for the enantioselective functionalization of the most different organic molecules. Both C-C and C-heteroatom bonds can be formed in an enantioselective fashion using many types of catalyst and the field is always growing. Many kind of chiral catalysts have emerged as privileged, but among them Proline, cinchona alkaloids, BINOL, and their derivatives showed to be particularly useful chiral scaffolds. This thesis, after a short presentation of many organocatalysts and activation modes, focuses mainly on cinchona alkaloid derived primary amines and BINOL derived chiral Brønsted acids, describing their properties and applications. Then, in the experimental part, these compounds are used for the catalysis of new transformations. The enantioselective Friedel-Crafts alkylation of cyclic enones with naphthols using cinchona alkaloid derived primary amines as catalysts is presented and discussed. The results of this work were very good and this resulted also in a publication. The same catalysts are then used to accomplish the enantioselective addition of indoles to cyclic enones. Many catalysts in combination with many acids as co-catalysts were tried and the reaction was fully studied. Selective N-alkylation was obtained in many cases, in combination with quite good to good enantioselectivities. Also other kind of catalysis were tried for this reaction, with interesting results. Another aza-Michael reaction between OH-free hydroxylamines and nitrostyrene using cinchona alkaloid derived thioureas is briefly discussed. Then our attention focused on Brønsted acid catalyzed transformations. With this regard, the Prins cyclization, a reaction never accomplished in an enantioselective fashion until now, is presented and developed. The results obtained are promising. In the last part of this thesis the work carried out abroad is presented. In Prof. Rueping laboratories, an enantioselective Nazarov cyclization using cooperative catalysis and the enantioselective desymmetrization of meso-hydrobenzoin catalyzed by Brønsted acid were studied.
Resumo:
Group B Streptococcus [GBS; Streptococcus agalactiae] is the leading cause of life-threatening diseases in newborn and is also becoming a common cause of invasive diseases in non-pregnant, elderly and immune-compromised adults. Pili, long filamentous fibers protruding from the bacterial surface, have been discovered in GBS, as important virulence factors and vaccine candidates. Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date and their mechanisms of transpeptidation and regulation need to be further investigated. The available three-dimensional structures of these enzymes reveal a typical sortase fold except for the presence of a unique feature represented by an N-terminal highly flexible loop, known as the “lid”. This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an auto-inhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme. A further characterization of this sortase active mutant showed promiscuity in the substrate recognition, as it is able to polymerize different LPXTG-proteins in vitro.
Resumo:
Group B Streptococcus (GBS) is a Gram-positive human pathogen representing one of the most common causes of life-threatening bacterial infections such as sepsis and meningitis in neonates. Covalently polymerized pilus-like structures have been discovered in GBS as important virulence factors as well as vaccine candidates. Pili are protein polymers forming long and thin filamentous structures protruding from bacterial cells, mediating adhesion and colonization to host cells. Gram-positive bacteria, including GBS, build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates that are the backbone protein forming the pilus shaft and two ancillary proteins. Also the cell-wall anchoring of the pilus polymers made of covalently linked pilin subunits is mediated by a sortase enzyme. GBS expresses three structurally distinct pilus types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are not understood until now. Pilus 2b is frequently found in ST-17 strains that are mostly associated with meningitis and high mortality rate especially in infants. In this work the assembly mechanism of GBS pilus type 2b has been elucidated by dissecting through genetic, biochemical and structural studies the role of the two pilus-associated sortases. The most significant findings show that pilus 2b assembly appears “non-canonical”, differing significantly from current pilus assembly models in Gram-positive pathogens. Only sortase-C1 is involved in pilin polymerization, while the sortase-C2 does not act as a pilin polymerase, but it is involved in cell-wall pilus anchoring. Our findings provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the role of this pilus type during host infection has been investigated. By using a mouse model of meningitis we demonstrated that type 2b pilus contributes to pathogenesis of meningitis in vivo.
The synthesis of maleic anhydride: study of a new process and improvement of the industrial catalyst
Resumo:
Maleic anhydride is an important chemical intermediate mainly produced by the selective oxidation of n-butane, an industrial process catalyzed by vanadyl pyrophosphate-based materials, (VO)2P2O7. The first topic was investigated in collaboration with a company specialized in the production of organic anhydrides (Polynt SpA), with the aim of improving the performance of the process for the selective oxidation of n-butane to maleic anhydride, comparing the behavior of an industrial vanadyl pyrophosphate catalysts when utilized either in the industrial plant or in lab-scale reactor. The study was focused on how the catalyst characteristics and reactivity are affected by the reaction conditions and how the addition of a dopant can enhance the catalytic performance. Moreover, the ageing of the catalyst was studied, in order to correlate the deactivation process with the modifications occurring in the catalyst. The second topic was produced within the Seventh Framework (FP7) European Project “EuroBioRef”. The study was focused on a new route for the synthesis of maleic anhydride starting from an alternative reactant produced by fermentation of biomass:“bio-1-butanol”. In this field, the different possible catalytic configurations were investigated: the process was divided into two main reactions, the dehydration of 1-butanol to butenes and the selective oxidation of butenes to maleic anhydride. The features needed to catalyze the two steps were analyzed and different materials were proposed as catalysts, namely Keggin-type polyoxometalates, VOPO4∙2H2O and (VO)2P2O7. The reactivity of 1-butanol was tested under different conditions, in order to optimize the performance and understand the nature of the interaction between the alcohol and the catalyst surface. Then, the key intermediates in the mechanism of 1-butanol oxidehydration to MA were studied, with the aim of understanding the possible reaction mechanism. Lastly, the reactivity of the chemically sourced 1-butanol was compared with that one of different types of bio-butanols produced by biomass fermentation.
Resumo:
Marine sediments are the main accumulation reservoir of organic recalcitrant pollutants such as polychlorinated biphenyls (PCBs). In the anoxic conditions typical of these sediments, anaerobic bacteria of the phylum Chloroflexi are able to attack these compounds in a process called microbial reductive dechlorination. Such activity and members of this phylum were detected in PCB-impacted sediments of the Venice Lagoon. The aim of this work was to investigate microbial reductive dechlorination and design bioremediation approaches for marine sediments of the area. Three out of six sediment cultures from different sampling areas exhibited dechlorination activities in the same conditions of the site and two phylotypes (VLD-1 and VLD-2) were detected and correlated to this metabolism. Biostimulation was tested on enriched dechlorinating sediment cultures from the same site using five different electron donors, of which lactate was the best biostimulating agent; complementation of microbial and chemical dechlorination catalyzed by biogenic zerovalent Pd nanoparticles was not effective due to sulfide poisoning of the catalyst. A new biosurfactant-producing strain of Shewanella frigidimarina was concomitantly obtained from hydrocarbon-degrading marine cultures and selected because of the low toxicity of its product. All these findings were then exploited to develop bioremediation lab-scale tests in shaken reactors and static microcosms on real sediments and water of the Venice lagoon, testing i) a bioaugmentation approach, with a selected enriched sediment culture from the same area, ii) a biostimulation approach with lactate as electron donor, iii) a bioavailability enhancement with the supplementation of the newly-discovered biosurfactant, and iv) all possible combinations of the afore-mentioned approaches. The best bioremediation approach resulted to be a combination of bioaugmentation and bioremediation and it could be a starting point to design bioremediation process for actual marine sediments of the Venice Lagoon area.