22 resultados para BATIO3-COFE2O4 NANOSTRUCTURES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the search to understand the interaction between cells and their underlying substrates, life sciences are beginning to incorporate micro and nano-technology based tools to probe, measure and improve cellular behavior. In this frame, patterned surfaces provide a platform for highly defined cellular interactions and, in perspective, they offer unique advantages for artificial implants. For these reasons, functionalized materials have recently become a central topic in tissue engineering. Nanotechnology, with its rich toolbox of techniques, can be the leading actor in the materials patterning field. Laser assisted methods, conventional and un-conventional lithography and other patterning techniques, allow the fabrication of functional supports with tunable properties, either physically, or topographically and chemically. Among them, soft lithography provides an effective (and low cost) strategy for manufacturing micro and nanostructures. The main focus of this work is the use of different fabrication approaches aiming at a precise control of cell behavior, adhesion, proliferation and differentiation, through chemically and spatially designed surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is going to show the activities performed in the frame of my PhD studies at the University of Bologna, under the supervision of Prof. Mauro Comes Franchini, at the Department of Industrial Chemistry “Toso Montanari”. The main topic of this dissertation will be the study of organic-inorganic hybrid nanostructures and materials for advanced applications in different fields of materials technology and development such as theranostics, organic electronics and additive manufacturing, also known as 3D printing. This work is therefore divided into three chapters, that recall the fundamentals of each subject and to recap the state-of-the-art of scientific research around each topic. In each chapter, the published works and preliminary results obtained during my PhD career will be discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA as powerful building molecule, is widely used for the assembly of molecular structures and dynamic molecular devices with different potential applications, ranging from synthetic biology to diagnostics. The feature of sequence programmability, which makes it possible to predict how single stranded DNA molecules fold and interact with one another, allowed the development of spatiotemporally controlled nanostructures and the engineering of supramolecular devices. The first part of this thesis addresses the development of an integrated chemiluminescence (CL)-based lab-on-chip sensor for detection of Adenosine-5-triphosphate (ATP) life biomarker in extra-terrestrial environments.Subsequently, we investigated whether it is possible to study the interaction and the recognition between biomolecules and their targets, mimicking the intracellular environment in terms of crowding, confinement and compartmentalization. To this purpose, we developed a split G-quadruplex DNAzyme platform for the chemiluminescent and quantitative detection of antibodies based on antibody-induced co-localization proximity mechanism in which a split G-quadruplex DNAzyme is led to reassemble into the functional native G-quadruplex conformation as the effect of a guided spatial nanoconfinement.The following part of this thesis aims at developing chemiluminescent nanoparticles for bioimaging and photodynamic therapy applications.In chapter5 a realistic and accurate evaluation of the potentiality of electrochemistry and chemiluminescence (CL) for biosensors development (i.e., is it better to “measure an electron or a photon”?), has been achieved.In chapter 6 the emission anisotropy phenomenon for an emitting dipole bound to the interface between two media with different refractive index has been investigated for chemiluminescence detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomarkers are biological indicators of human health conditions. Their ultra-sensitive quantification is of paramount importance in clinical monitoring and early disease diagnosis. Biosensors are simple and easy-to-use analytical devices and, in their world, electrochemiluminescence (ECL) is one of the most promising analytical techniques that needs an ever-increasing sensitivity for improving its clinical effectiveness. Scope of this project was the investigation of the ECL generation mechanisms for enhancing the ECL intensity also through the identification of suitable nanostructures. The combination of nanotechnologies, microscopy and ECL has proved to be a very successful strategy to improve the analytical efficiency of ECL in one of its most promising bioanalytical approaches, the bead-based immunoassay. Nanosystems, such as [Ru(bpy)3]2+-dye-doped nanoparticles (DDSNPs) and Bodipy Carbon Nanodots, have been used to improve the sensitivity of ECL techniques thanks to their advantageous and tuneable properties, reaching a signal increase of 750% in DDSNPs-bead-based immunoassay system. In this thesis, an investigation of size and distance effects on the ECL mechanisms was carried out through the innovative combination of ECL microscopy and electrochemical mapping of radicals. It allowed the discovery of an unexpected and highly efficient mechanistic path for ECL generation at small distances from the electrode surface. It was exploited and enhanced through the addition of a branched amine DPIBA to the usual coreactant TPrA solution for enhancing the ECL efficiency until a maximum of 128%. Finally, a beads-based immunoassay and an immunosensor specific for cardiac Troponin I were built exploiting previous results and carbon nanotubes features. They created a conductive layer around beads enhancing the signal by 70% and activating an ECL mechanism unobserved before in such systems. In conclusion, the combination of ECL microscopy and nanotechnology and the deep understanding of the mechanisms responsible for the ECL emission led to a great enhancement in the signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrocatalytic reduction of CO2 (CO2RR) is a captivating strategy for the conversion of CO2 into fuels, to realize a carbon neutral circular economy. In the recent years, research has focused on the development of new materials and technology capable of capturing and converting CO2 into useful products. The main problem of CO2RR is given by its poor selectivity, which can lead to the formation of numerous reaction products, to the detriment of efficiencies. For this reason, the design of new electrocatalysts that selectively and efficiently reduce CO2 is a fundamental step for the future exploitation of this technology. Here we present a new class of electrocatalysts, designed with a modular approach, namely, deriving from the combination of different building blocks in a single nanostructure. With this approach it is possible to obtain materials with an innovative design and new functionalities, where the interconnections between the various components are essential to obtain a highly selective and efficient reduction of CO2, thus opening up new possibilities in the design of optimized electrocatalytic materials. By combining the unique physic-chemical properties of carbon nanostructures (CNS) with nanocrystalline metal oxides (MO), we were able to modulate the selectivity of CO2RR, with the production of formic acid and syngas at low overpotentials. The CNS have not only the task of stabilizing the MO nanoparticles, but the creation of an optimal interface between two nanostructures is able to improve the catalytic activity of the active phase of the material. While the presence of oxygen atoms in the MO creates defects that accelerate the reaction kinetics and stabilize certain reaction intermediates, selecting the reaction pathway. Finally, a part was dedicated to the study of the experimental parameters influencing the CO2RR, with the aim of improving the experimental setup in order to obtain commercial catalytic performances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroinflammation is a crucial pathogenic mechanism that commonly underlies most neurodegenerative diseases. Microglia, the immune cells of the brain, play a critical role that changes depending on the stage of neuropathology: at early phases of brain diseases microglia display the neuroprotective phenotype which is switched to the classically activated pro-inflammatory subtype at later stages, contributing to neurodegeneration. The microglial phenotypic shift is characterized by a change in the release of bioactive molecules both soluble and through extracellular vesicles. Our in vitro studies aim to understand whether different types of activation could determine change in vesicles content, in particular miRNAs, and whether this could influence the activation state of control microglial cells. Microglial polarization has been induced in two different in vitro models: N9, microglial murine cell line, have been treated by using LPS towards a proinflammatory/neurotoxic phenotype or ATP towards antinflammatory/neuroprotective status; HMC3, human microglial cell line, have been activated using IFN-+ATP. We demonstrated that conditioned media/exosomes obtained from donor microglia were able to promote a pro-inflammatory phenotype in control cells, leading us to prove the existence of a neuroinflammation spreading process mediated by extracellular vesicles of microglia with a crucial role of miRNAs. Increased expression of miRNA-34a observed in N9 model underlines a possible contribution in the diffusion of proinflammatory activation of microglia. Thus, we tried to downregulate miR-34a expression using cleaving sequences of anti-mir-34a DNAzyme delivered by DNA nanostructures aimed to confirm the involvement of miR-34a in microglia polarization towards the neurotoxic phenotype. In conclusion, this thesis work reveal a new inflammation spreading mechanism that involves release of vesicles containing specific cargos by donor polarized microglia, particularly miRNAs, able to influence the phenotypic shift in unpolarized microglia: this process deserves to be deeply investigated as potential therapeutic target to counteract neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stable increase in average life expectancy and the consecutive increase in the number of cases of bone related diseases has led to a growing interest in the development of materials that can promote bone repair and/or replacement. Among the best candidates are those materials that have a high similarity to bones, in terms of composition, structure, morphology and functionality. Biomineralized tissue, and thus also bones, have three main components: water, an organic matrix and an inorganic deposit. In vertebrates, the inorganic deposit consists of what is called biological apatite, which slightly differ from stoichiometric hydroxyapatite (HA) both in crystallographic terms and in the presence of foreign atoms and species. This justifies the great attention towards calcium phosphates, which show excellent biocompatibility and bioactivity. The performances of the material and the response of the biological tissue can be further improved through their functionalization with ions, biologically active molecules and nanostructures. This thesis focuses on several possible functionalizations of calcium phosphates, and their effects on chemical properties and biological performances. In particular, the functionalizing agents include several biologically relevant ions, such as Cobalt (Co), Manganese (Mn), Strontium (Sr) and Zinc (Zn); two organic molecules, a flavonoid (Quercetin) and a polyphenol (Curcumin); and nanoparticles, namely tungsten oxide (WO3) NPs. Functionalization was carried out on various calcium phosphates: dicalcium phosphate dihydrate (DCPD), dicalcium phosphate anhydrous (DCPA) and hydroxyapatite (HA). Two different strategies of functionalization were applied: direct synthesis and adsorption from solution. Finally, a chapter is devoted to a preliminary study on the development of cements based on some of the functionalized phosphates obtained.