26 resultados para Apple pomance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between the external solution and the internal liquid phase of the cells. Vacuum Impregnation of porous products immersed in a liquid phase consist of reduction of pressure in a solid-liquid system (vacuum step) followed by the restoration of atmospheric pressure (atmospheric step). During the vacuum step the internal gas in the product pores is expanded and partially flows out while during the atmospheric step, there is a compression of residual gas and the external liquid flows into the pores (Fito, 1994). This process is also a very useful unit operation in food engineering as it allows to introduce specific solutes in the tissue which can play different functions (antioxidants, pH regulators, preservatives, cryoprotectants etc.). The present study attempts to enhance our understanding and knowledge of fruit as living organism, interacting dynamically with the environment, and to explore metabolic, structural, physico-chemical changes during fruit processing. The use of innovative approaches and/or technologies such as SAFES (Systematic Approach to Food Engineering System), LF-NMR (Low Frequency Nuclear Magnetic Resonance), GASMAS (Gas in Scattering Media Absorption Spectroscopy) are very promising to deeply study these phenomena. SAFES methodology was applied in order to study irreversibility of the structural changes of kiwifruit during short time of osmotic treatment. The results showed that the deformed tissue can recover its initial state 300 min after osmotic dehydration at 25 °C. The LF-NMR resulted very useful in water status and compartmentalization study, permitting to separate observation of three different water population presented in vacuole, cytoplasm plus extracellular space and cell wall. GASMAS techniques was able to study the pressure equilibration after Vacuum Impregnation showing that after restoration of atmospheric pressure in the solid-liquid system, there was a reminding internal low pressure in the apple tissue that slowly increases until reaching the atmospheric pressure, in a time scale that depends on the vacuum applied during the vacuum step. The physiological response of apple tissue on Vacuum Impregnation process was studied indicating the possibility of vesicular transport within the cells. Finally, the possibility to extend the freezing tolerance of strawberry fruits impregnated with cryoprotectants was proven.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This process produces CO2 which is mainly released as Rh. It is thus relevant to understand how microbial activity is influenced by environmental factors like soil temperature, soil moisture and nutrient availability, since part of the CO2 produced by Rh, directly increases atmospheric CO2 concentration and therefore affects the phenomenon of climate change. Among terrestrial ecosystems, agricultural fields have traditionally been considered as sources of atmospheric CO2. In agricultural ecosystems, in particular apple orchards, I identified the role of root density, soil temperature, soil moisture and nitrogen (N) availability on Rs and on its two components, Ra and Rh. To do so I applied different techniques to separate Rs in its two components, the ”regression technique” and the “trenching technique”. I also studied the response of Ra to different levels of N availability, distributed either in a uniform or localized way, in the case of Populus tremuloides trees. The results showed that Rs is mainly driven by soil temperature, to which it is positively correlated, that high levels of soil moisture have inhibiting effects, and that N has a negligible influence on total Rs, as well as on Ra. Further I found a negative response of Rh to high N availability, suggesting that microbial decomposition processes in the soil are inhibited by the presence of N. The contribution of Ra to Rs was of 37% on average.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene plays an important role in apple fruit development. Its biosynthesis is catalyzed by two enzymes ACS and ACO. The first is considered to catalyzes the rate-limiting step of ethylene production and in apple two different alleles (MdACS1-1 and MdACS1-2) of this gene have been identified. The presence in the promoter region of MdACS1-2 allele of a SINE insertion is considered to be responsible for a low transcription level and a pronounced reduction in ethylene production in apple cultivar homozygous for this allele. However, the specific expression of each MdACS1 allele has never been reported as well as any in vivo analysis of its 5’-flanking region. With the present study we addressed these issues by developing a set of qPCR allele specific primers for MdACS1 and by a functional characterization of the MdACS1 promoters by transient expression analysis. qPCR analysis on different apple tissues and stages of development demonstrated that MdACS1-2 allele is never express and that MdACS1-1 allele is ripening-related and expresses predominantly but not exclusively in apple fruit. To test MdACS1 promoter in fruit the only protocol available in literature for transient transformation of apple fruit was evaluated and optimized. Twenty chimeric promoter::reporter constructs were generated and analyzed by Agrobacterium-transient transformation. The in vivo analysis allowed to identify an enhancer-like region of 261 bp in MdACS1 promoter and a region of 57 bp in MdACS1-2 responsible, also if not alone, in the inactivation of the MdACS1-2 allele. Through the assessment of ethylene production in a segregating progeny derived from the cross between Fuji and Mondial Gala (homozygous for MdACS1-2 allele) we demonstrated that at least two other genes may be involved in apple ethylene production. An hypothesis that could explain the difference between Fuji and Mondial Gala have been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brown rot fungi belong to a group of fungal pathogens that causes considerable damage to cultivated fruits trees, particularly stone fruits and apples in the temperate regions of the World and during the postharvest with an important economic impact. In particular in Italy, it is important to monitor the Monilinia population to control economic losses associated to the peach and nectarine market. This motivates the research steps presented in this dissertation on Monilinia Italian isolates. The Monilinia species collected from stone fruits have been identified using molecular analysis based on specific primers. The relevant role of M. fructicola was confirmed and, for the first time, it was found also on apple fruits. To avoid the development of resistant strains and implement valid treatment strategies, the understanding of the fruit natural resistance during different developmental stages and the assessment of the Monilinia sensitivity/resistance to fungicides are required. The relationship between the inhibition spots and the phenolic compounds in peach fruit peel was highlighted in this research. Three methods were used to assess isolate resistance/sensitivity, the amended medium, the Spiral Gradient Endpoint Method (SGD) and the Alamar Blue method. The PCR was used to find possible mutation points in the b-tubulin gene that is responsible for fungicide resistance. Interestingly, no mutation points were observed in resistant M. laxa isolates, suggesting that the resistance could be stimulated by environmental factors. This lead to the study of the effect of the temperature on the resistance and the preliminary results of in vitro tests showed that maximum inhibition was observed at 30°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the hot water treatment (HW) represents an effective and safe approach for managing postharvest decay. This study reported the effect of an HW (60°C for 60 s and 45°C for 10 min) on brown rot and blue mould respectively. Peaches was found more thermotolerant compared to apple fruit, otherwise Penicillium expansum was more resistant to heat with respect to Monilinia spp. In semi-commercial and commercial trials, the inhibition of brown rot in naturally infected peaches was higher than 78% after 6 days at 0°C and 3 days at 20°C. Moreover, in laboratory trials a 100% disease incidence reduction was obtained by treating artificially infected peaches at 6-12 h after inoculation revealing a curative effect of HW. The expression levels of some genes were evaluated by qRT-PCR. Specifically, the cell wall genes (β-GAL, PL, PG, PME) showed a general decrease of expression level whereas PAL, CHI, HSP70 and ROS-scavenging genes were induced in treated peaches compared to the control ones. Contrarily, HW applied on artificially infected fruit before the inoculum was found to increase brown rot susceptibility. This aspect might be due to an increase of fruit VOCs emission as revealed by PTR-ToF-MS analysis. In addition a microarray experiment was conducted to analyze molecular mechanisms underneath the apple response to heat. Our results showed a largest amount of induced Heat shock proteins (HSPs), Heat shock cognate proteins (HSCs), Heat shock transcription factors (HSTFs) genes found at 1 and 4 hours from the treatment. Those genes required for the thermotolerance process could be involved in induced resistance response. The hypothesis was confirmed by 30% of blue mold disease reduction in artificially inoculated apple after 1 and 4 hours from the treatment. In order to improve peaches quality and disease management during storage, an innovative tool was also used: Da-meter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification and genetic diversity of phytoplasmas infecting tropical plant species, selected among those most agronomically relevant in South-east Asia and Latin America were studied. Correlation between evolutionary divergence of relevant phytoplasma strains and their geographic distribution by comparison on homologous genes of phytoplasma strains detected in the same or related plant species in other geographical areas worldwide was achieved. Molecular diversity was studied on genes coding ribosomal proteins, groEL, tuf and amp besides phytoplasma 16S rRNA. Selected samples infected by phytoplasmas belonging to diverse ribosomal groups were also studied by in silico RFLP followed by phylogenetic analyses. Moreover a partial genome annotation of a ‘Ca. P. brasiliense’ strain was done towards future application for epidemiological studies. Phytoplasma presence in cassava showing frog skin (CFSD) and witches’ broom (CWB) diseases in Costa Rica - Paraguay and in Vietnam – Thailand, respectively, was evaluated. In both cases, the diseases were associated with phytoplasmas related to aster yellows, apple proliferation and “stolbur” groups, while only phytoplasma related to X-disease group in CFSD, and to hibiscus witches’ broom, elm yellows and clover proliferation groups in CWB. Variability was found among strains belonging to the same ribosomal group but having different geographic origin and associated with different disease. Additionally, a dodder transmission assay to elucidate the role of phytoplasmas in CWB disease was carried out, and resulted in typical phytoplasma symptoms in periwinkle plants associated with the presence of aster yellows-related strains. Lethal wilt disease, a severe disease of oil palm in Colombia that is spreading throughout South America was also studied. Phytoplasmas were detected in symptomatic oil palm and identified as ‘Ca. P. asteris’, ribosomal subgroup 16SrI-B, and were distinguished from other aster yellows phytoplasmas used as reference strains; in particular, from an aster yellows strain infecting corn in the same country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food suppliers currently measure apple quality considering basic pomological descriptors. Sensory analysis is expensive, does not permit to analyse many samples, and cannot be implemented for measuring quality properties in real time. However, sensory analysis is the best way to precisely describe food eating quality, since it is able to define, measure, and explain what is really perceivable by human senses and using a language that closely reflects the consumers’ perception. On the basis of such observations, we developed a detailed protocol for apple sensory profiling by descriptive sensory analysis and instrumental measurements. The collected sensory data were validated by applying rigorous scientific criteria for sensory analysis. The method was then applied for studying sensory properties of apples and their changes in relation to different pre- and post-harvest factors affecting fruit quality, and demonstrated to be able to discriminate fruit varieties and to highlight differences in terms of sensory properties. The instrumental measurements confirmed such results. Moreover, the correlation between sensory and instrumental data was studied, and a new effective approach was defined for the reliable prediction of sensory properties by instrumental characterisation. It is therefore possible to propose the application of this sensory-instrumental tool to all the stakeholders involved in apple production and marketing, to have a reliable description of apple fruit quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chapter 1 studies how consumers’ switching costs affect the pricing and profits of firms competing in two-sided markets such as Apple and Google in the smartphone market. When two-sided markets are dynamic – rather than merely static – I show that switching costs lower the first-period price if network externalities are strong, which is in contrast to what has been found in one-sided markets. By contrast, switching costs soften price competition in the initial period if network externalities are weak and consumers are more patient than the platforms. Moreover, an increase in switching costs on one side decreases the first-period price on the other side. Chapter 2 examines firms’ incentives to invest in local and flexible resources when demand is uncertain and correlated. I find that market power of the monopolist providing flexible resources distorts investment incentives, while competition mitigates them. The extent of improvement depends critically on demand correlation and the cost of capacity: under social optimum and monopoly, if the flexible resource is cheap, the relationship between investment and correlation is positive, and if it is costly, the relationship becomes negative; under duopoly, the relationship is positive. The analysis also sheds light on some policy discussions in markets such as cloud computing. Chapter 3 develops a theory of sequential investments in cybersecurity. The regulator can use safety standards and liability rules to increase security. I show that the joint use of an optimal standard and a full liability rule leads to underinvestment ex ante and overinvestment ex post. Instead, switching to a partial liability rule can correct the inefficiencies. This suggests that to improve security, the regulator should encourage not only firms, but also consumers to invest in security.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last half-century has seen a continuing population and consumption growth, increasing the competition for land, water and energy. The solution can be found in the new sustainability theories, such as the industrial symbiosis and the zero waste objective. Reducing, reusing and recycling are challenges that the whole world have to consider. This is especially important for organic waste, whose reusing gives interesting results in terms of energy release. Before reusing, organic waste needs a deeper characterization. The non-destructive and non-invasive features of both Nuclear Magnetic Resonance (NMR) relaxometry and imaging (MRI) make them optimal candidates to reach such characterization. In this research, NMR techniques demonstrated to be innovative technologies, but an important work on the hardware and software of the NMR LAGIRN laboratory was initially done, creating new experimental procedures to analyse organic waste samples. The first results came from soil-organic matter interactions. Remediated soils properties were described in function of the organic carbon content, proving the importance of limiting the addition of further organic matter to not inhibit soil processes as nutrients transport. Moreover NMR relaxation times and the signal amplitude of a compost sample, over time, showed that the organic matter degradation of compost is a complex process that involves a number of degradation kinetics, as a function of the mix of waste. Local degradation processes were studied with enhanced quantitative relaxation technique that combines NMR and MRI. The development of this research has finally led to the study of waste before it becomes waste. Since a lot of food is lost when it is still edible, new NMR experiments studied the efficiency of conservation and valorisation processes: apple dehydration, meat preservation and bio-oils production. All these results proved the readiness of NMR for quality controls on a huge kind of organic residues and waste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growing number of empirical studies recently investigated consumers' valuation for local food products. However, different aspects related to the local food consumption still remain vague or unexplored. As such, the objective of the present research is to fulfill the existing literature using a mixed methodological approach for the investigation of consumers' preferences and Willingness to Pay (WTP) for local food products. First of all, local food is still a blurred concept and this factor might be source of individuals' misperception for the local origin meaning. Therefore, a qualitative research has been performed in order to investigate the meaning and the perception of the local food in the Italian food market. Results from this analysis have been used as inputs for the building of a non-hypothetical Real Choice Experiment (RCE) to estimate consumers' WTP for locally and organically produced apple sauce. The contribution of this study is three-fold: (1) consumers' valuation for the local origin is interpreted in terms of regional borders, over the organic food claim in case of an unusual food product in the area of interest, (2) the interaction between individuals' personality traits and consumers’ preferences for local and organic foods is analyzed, (3) the role of Commitment Cost creation in consumers' choice making in case of uncertainty due to the use of a novel food product and of an unconventional food claim is investigated. Results suggest that consumers are willing to pay a higher price premium for organic over locally produced apple sauce, possibly because of the presence of a regulated certification. In accordance with Commitment Cost theory, the organic label might thus decrease consumers' uncertainty for the features of the product in question. Results also indicate that individuals' personality can be source of heterogeneity in consumers' preferences.