20 resultados para Alzheimer’s Disease


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimer’s disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimer’s disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 μM) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimer’s disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le alterazioni della funzionalità mitocondriale detengono un ruolo cruciale nella patogenesi della malattia di Alzheimer (AD), sostenendo il processo neurodegenerativo attraverso meccanismi quali la riduzione della disponibilità energetica e la iperproduzione di ROS. Alle numerose ipotesi di patogenesi dell’AD, si è recentemente affiancata la cosiddetta ipotesi vascolare. Nei soggetti AD è stata riscontrata una significativa riduzione della disponibilità di ossigeno a livello neuronale (ipossia neuronale). Da numerosi studi è poi emerso che l’ipossia gioca un ruolo fondamentale nello sviluppo dell’AD contribuendo a più vie patogenetiche contemporaneamente. Tuttavia, non sono stati ancora chiariti tutti i meccanismi attraverso cui l’ipossia esplica la sua azione di danno. Lo scopo di questo studio è stato quello di contribuire a chiarire il ruolo patologico dell’ipossia nell’AD, analizzando principalmente le alterazioni della funzionalità mitocondriale indotte dalla riduzione della disponibilità di ossigeno. Nella prima fase dello studio cellule PC12 sono state coltivate in presenza di β-amiloide e ipossia. In questo modello abbiamo osservato un potenziamento dei fenomeni di deplezione dell’ATP e di generazione delle ROS indotti dalla Aβ quando anche l’ipossia era presente come fonte di danno cellulare, ipotizzando per i due fattori un effetto congiunto di tipo additivo. Nella seconda fase abbiamo esposto all’ipossia fibroblasti prelevati da pazienti AD portatori di mutazioni a carico dei geni APP e PSEN. La presenza di mutazioni predisponenti ad un fenotipo AD era in grado di determinare un danno bioenergetico e ossidativo. Le alterazioni bioenergetiche riscontrate in normossia risultavano ulteriormente potenziate quando i fibroblasti erano coltivati in ipossia, mentre lo stato di stress ossidativo veniva evidenziato solo in condizioni ipossiche. Sulla base dei risultati finora conseguiti si può ipotizzare che uno dei meccanismi attraverso cui l’ipossia esplica la sua azione di danno nella AD, possa essere dovuto alla capacità di potenziare ulteriormente le alterazioni della funzionalità mitocondriale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The language connectome was in-vivo investigated using multimodal non-invasive quantitative MRI. In PPA patients (n=18) recruited by the IRCCS ISNB, Bologna, cortical thickness measures showed a predominant reduction on the left hemisphere (p<0.005) with respect to matched healthy controls (HC) (n=18), and an accuracy of 86.1% in discrimination from Alzheimer’s disease patients (n=18). The left temporal and para-hippocampal gyri significantly correlated (p<0.01) with language fluency. In PPA patients (n=31) recruited by the Northwestern University Chicago, DTI measures were longitudinally evaluated (2-years follow-up) under the supervision of Prof. M. Catani, King’s College London. Significant differences with matched HC (n=27) were found, tract-localized at baseline and widespread in the follow-up. Language assessment scores correlated with arcuate (AF) and uncinate (UF) fasciculi DTI measures. In left-ischemic stroke patients (n=16) recruited by the NatBrainLab, King’s College London, language recovery was longitudinally evaluated (6-months follow-up). Using arterial spin labelling imaging a significant correlation (p<0.01) between language recovery and cerebral blood flow asymmetry, was found in the middle cerebral artery perfusion, towards the right. In HC (n=29) recruited by the DIBINEM Functional MR Unit, University of Bologna, an along-tract algorithm was developed suitable for different tractography methods, using the Laplacian operator. A higher left superior temporal gyrus and precentral operculum AF connectivity was found (Talozzi L et al., 2018), and lateralized UF projections towards the left dorsal orbital cortex. In HC (n=50) recruited in the Human Connectome Project, a new tractography-driven approach was developed for left association fibres, using a principal component analysis. The first component discriminated cortical areas typically connected by the AF, suggesting a good discrimination of cortical areas sharing a similar connectivity pattern. The evaluation of morphological, microstructural and metabolic measures could be used as in-vivo biomarkers to monitor language impairment related to neurodegeneration or as surrogate of cognitive rehabilitation/interventional treatment efficacy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuroinflammatory pathways are main culprits of neurodegenerative diseases' onset and progression, including Alzheimer’s disease (AD). On this basis, several anti-inflammatory drugs were repurposed in clinical trials. However, they have failed, probably because neuroinflammation is a complex network, still not fully understood. From these evidences, this thesis focused on the design and synthesis of new chemical entities as potential neuroinflammatory drugs or chemical probes. Projects 1 and 2 aimed to multi-target-directed ligand (MTDL) development to target neuroinflammation in AD. Polypharmacology by MTDLs is considered one of the most promising strategies to face the multifactorial nature of neurodegenerative diseases. Particularly, Project 1 took inspiration from a cromolyn-ibuprofen drug combination polypharmacological approach, which was recently investigated in AD clinical trials. Based on that, two cromolyn-(S)-ibuprofen codrug series were designed and synthesized. Parent drugs were combined via linking or fusing strategies in 1:2 or 1:1 ratio, by means of hydrolyzable bonds. Project 2 started from a still ongoing AD clinical trial on investigational drug neflamapimod. It is a selective inhibitor of p38α-MAPK, a kinase strictly involved in neuroinflammatory pathways. On the other side, rasagiline, an anti-Parkinson drug, was also repurposed as AD treatment. Indeed, rasagiline’s propargylamine fragment demonstrated to be responsible not only for the MAO-B selective inhibition, but also for the neuroprotective activity. Thus, to synergistically combine these two effects into single-molecules, a small set of neflamapimod-rasagiline hybrids was developed. In the end BMX, a poorly investigated kinase, which seems to be involved in pro-inflammatory mediator production, was explored for the development of new chemical probes. High-quality chemical probes are a powerful tool in target validation and starting points for the development of new drug candidates. Thus, Project 3 focused on the design and synthesis of two series of optimized BMX covalent inhibitors as selective chemical probes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.