18 resultados para 3D virtual human
Resumo:
Industrial robots are both versatile and high performant, enabling the flexible automation typical of the modern Smart Factories. For safety reasons, however, they must be relegated inside closed fences and/or virtual safety barriers, to keep them strictly separated from human operators. This can be a limitation in some scenarios in which it is useful to combine the human cognitive skill with the accuracy and repeatability of a robot, or simply to allow a safe coexistence in a shared workspace. Collaborative robots (cobots), on the other hand, are intrinsically limited in speed and power in order to share workspace and tasks with human operators, and feature the very intuitive hand guiding programming method. Cobots, however, cannot compete with industrial robots in terms of performance, and are thus useful only in a limited niche, where they can actually bring an improvement in productivity and/or in the quality of the work thanks to their synergy with human operators. The limitations of both the pure industrial and the collaborative paradigms can be overcome by combining industrial robots with artificial vision. In particular, vision can be exploited for a real-time adjustment of the pre-programmed task-based robot trajectory, by means of the visual tracking of dynamic obstacles (e.g. human operators). This strategy allows the robot to modify its motion only when necessary, thus maintain a high level of productivity but at the same time increasing its versatility. Other than that, vision offers the possibility of more intuitive programming paradigms for the industrial robots as well, such as the programming by demonstration paradigm. These possibilities offered by artificial vision enable, as a matter of fact, an efficacious and promising way of achieving human-robot collaboration, which has the advantage of overcoming the limitations of both the previous paradigms yet keeping their strengths.
Resumo:
The dissertation addresses the still not solved challenges concerned with the source-based digital 3D reconstruction, visualisation and documentation in the domain of archaeology, art and architecture history. The emerging BIM methodology and the exchange data format IFC are changing the way of collaboration, visualisation and documentation in the planning, construction and facility management process. The introduction and development of the Semantic Web (Web 3.0), spreading the idea of structured, formalised and linked data, offers semantically enriched human- and machine-readable data. In contrast to civil engineering and cultural heritage, academic object-oriented disciplines, like archaeology, art and architecture history, are acting as outside spectators. Since the 1990s, it has been argued that a 3D model is not likely to be considered a scientific reconstruction unless it is grounded on accurate documentation and visualisation. However, these standards are still missing and the validation of the outcomes is not fulfilled. Meanwhile, the digital research data remain ephemeral and continue to fill the growing digital cemeteries. This study focuses, therefore, on the evaluation of the source-based digital 3D reconstructions and, especially, on uncertainty assessment in the case of hypothetical reconstructions of destroyed or never built artefacts according to scientific principles, making the models shareable and reusable by a potentially wide audience. The work initially focuses on terminology and on the definition of a workflow especially related to the classification and visualisation of uncertainty. The workflow is then applied to specific cases of 3D models uploaded to the DFG repository of the AI Mainz. In this way, the available methods of documenting, visualising and communicating uncertainty are analysed. In the end, this process will lead to a validation or a correction of the workflow and the initial assumptions, but also (dealing with different hypotheses) to a better definition of the levels of uncertainty.
Resumo:
Sketches are a unique way to communicate: drawing a simple sketch does not require any training, sketches convey information that is hard to describe with words, they are powerful enough to represent almost any concept, and nowadays, it is possible to draw directly from mobile devices. Motivated from the unique characteristics of sketches and fascinated by the human ability to imagine 3D objects from drawings, this thesis focuses on automatically associating geometric information to sketches. The main research directions of the thesis can be summarized as obtaining geometric information from freehand scene sketches to improve 2D sketch-based tasks and investigating Vision-Language models to overcome 3D sketch-based tasks limitations. The first part of the thesis concerns geometric information prediction from scene sketches improving scene sketch to image generation and unlocking new creativity effects. The thesis proceeds showing a study conducted on the Vision-Language models embedding space considering sketches, line renderings and RGB renderings of 3D shape to overcome the use of supervised datasets for 3D sketch-based tasks, that are limited and hard to acquire. Following the obtained observations and results, Vision-Language models are applied to Sketch Based Shape Retrieval without the need of training on supervised datasets. We then analyze the use of Vision-Language models for sketch based 3D reconstruction in an unsupervised manner. In the final chapter we report the results obtained in an additional project carried during the PhD, which has lead to the development of a framework to learn an embedding space of neural networks that can be navigated to get ready-to-use models with desired characteristics.