246 resultados para Asti, Italy. Chiesa dei santissimi apostoli.
Resumo:
Background: MPLC represents a diagnostic challenge. Topic of the discussion is how to distinguish these patients as a metastatic or a multifocal disease. While in case of the different histology there are less doubt on the opposite in case of same histology is mandatory to investigate on other clinical features to rule out this question. Matherials and Methods: A retrospective review identified all patients treated surgically for a presumed diagnosis of SPLC. Pre-operative staging was obtained with Total CT scan and fluoro-deoxy positron emission tomography and mediastinoscopy. Patients with nodes interest or extra-thoracic location were excluded from this study. Epidermal growth factor receptor (EGFR) expression with complete immunohistochemical analisis was evaluated. Survival was estimated using Kaplan-Meyer method, and clinical features were estimated using a long-rank test or Cox proportional hazards model for categorical and continuous variable, respectively. Results: According to American College Chest Physician, 18 patients underwent to surgical resection for a diagnosis of MPLC. Of these, 8 patients had 3 or more nodules while 10 patients had less than 3 nodules. Pathologic examination demonstrated that 13/18(70%) of patients with multiple histological types was Adenocarcinoma, 2/18(10%) Squamous carcinoma, 2/18(10%) large cell carcinoma and 1/18(5%) Adenosquamosu carcinoma. Expression of EGFR has been evaluated in all nodules: in 7 patients of 18 (38%) the percentage of expression of each nodule resulted different. Conclusions: MPLC represent a multifocal disease where interactions of clinical informations with biological studies reinforce the diagnosis. EGFR could contribute to differentiate the nodules. However, further researches are necessary to validate this hypothesis.
Resumo:
The topic of my Ph.D. thesis is the finite element modeling of coseismic deformation imaged by DInSAR and GPS data. I developed a method to calculate synthetic Green functions with finite element models (FEMs) and then use linear inversion methods to determine the slip distribution on the fault plane. The method is applied to the 2009 L’Aquila Earthquake (Italy) and to the 2008 Wenchuan earthquake (China). I focus on the influence of rheological features of the earth's crust by implementing seismic tomographic data and the influence of topography by implementing Digital Elevation Models (DEM) layers on the FEMs. Results for the L’Aquila earthquake highlight the non-negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. Regarding the 2008 Wenchuan earthquake, the very steep topographic relief of Longmen Shan Range is implemented in my FE model. A large number of DEM layers corresponding to East China is used to achieve the complete coverage of the FE model. My objective was to explore the influence of the topography on the retrieved coseismic slip distribution. The inversion results reveals significant differences between the flat and topographic model. Thus, the flat models frequently adopted are inappropriate to represent the earth surface topographic features and especially in the case of the 2008 Wenchuan earthquake.
Resumo:
For some study cases (the Cathedral of Modena, Italy, XII-XIV century; the Ducal Palace in Mantua, Italy, XVI century; the church of San Francesco in Fano, Italy, XIV-XIX century), considered as representative of the use of natural and artificial stones in historical architecture, the complex interaction between environ-mental aggressiveness, materials’ microstructural characteristics and degradation was investigated. From the results of such analyses, it was found that materials microstructure plays a fundamental role in the actual extent to which weathering mechanisms affect natural and artificial stones. Consequently, the need of taking into account the important role of material microstructure, when evaluating the environmental aggressiveness to natural and artificial stones, was highlighted. Therefore, a possible quantification of the role of microstructure on the resistance to environmental attack was investigated. By exposing stone samples, with significantly different microstructural features, to slightly acidic aqueous solutions, simulating clean and acid rain, a good correlation between weight losses and the product of carbonate content and specific surface area (defined as the “vulnerable specific surface area”) was found. Alongside the evaluation of stone vulnerability, the development of a new consolidant for weathered carbonate stones was undertaken. The use of hydroxya-patite, formed by reacting the calcite of the stone with an aqueous solution of di-ammonium hydrogen phosphate, was found to be a promising consolidating tech-nique for carbonates stones. Indeed, significant increases in the mechanical prop-erties can be achieved after the treatment, which has the advantage of simply con-sisting in a non-hazardous aqueous solution, able to penetrate deeply into the stone (> 2 cm) and bring significant strengthening after just 2 days of reaction. Furthermore, the stone sorptivity is not eliminated after treatment, so that water and water vapor exchanges between the stone and the environment are not com-pletely blocked.
Resumo:
Timing of waiting list entrance for patients with cystic fibrosis in need of pulmonary transplant: the experience of a regional referral centre Objective: Evaluation of parameters that can predict a rapid decay of general conditions of patients affected by Cystic Fibrosis (CF) with no specific criteria to be candidate to pulmonary transplant. Material and methods: Fifteen patients with CF who died for complications and 8 who underwent lung transplantation in the 2000-2010 decade, were enrolled. Clinical data 2 years before the event (body max index, FEV1%, number of EV antibiotic treatments per year, colonization with Methicillin-resistant Staphylococcus aureus (MRSA), pseudomonas aeruginosa mucosus, burkholderia cepacia, pulmonary allergic aspergilosis) were compared among the 2 groups. Results: Mean FEV1% was significantly higher and mean number of antibiotic treatment was lower in deceased than in the transplanted patients (p<0.002 and p<0.001 respectively). Although in patients who died there were no including criteria to enter the transplant list 2 years before the exitus, suggestive findings such as low BMI (17.3), high incidence of hepatic pathology (33.3%), diabetes (50%), and infections with MRSA infection (25%), Pseudomonas aeruginosa (83.3%) and burkholderia cepacia (8.3%) were found with no statistical difference with transplanted patients, suggesting those patients were at risk of severe prognosis. In patients who died, females were double than males. Conclusion: While evaluating patients with CF, negative prognostic factors such as the ones investigated in this study, should be considered to select individuals with high mortality risk who need stricter therapeutical approach and follow up. Inclusion of those patients in the transplant waiting list should be taken into account.
Resumo:
The present work concerns with the study of debris flows and, in particular, with the related hazard in the Alpine Environment. During the last years several methodologies have been developed to evaluate hazard associated to such a complex phenomenon, whose velocity, impacting force and inappropriate temporal prediction are responsible of the related high hazard level. This research focuses its attention on the depositional phase of debris flows through the application of a numerical model (DFlowz), and on hazard evaluation related to watersheds morphometric, morphological and geological characterization. The main aims are to test the validity of DFlowz simulations and assess sources of errors in order to understand how the empirical uncertainties influence the predictions; on the other side the research concerns with the possibility of performing hazard analysis starting from the identification of susceptible debris flow catchments and definition of their activity level. 25 well documented debris flow events have been back analyzed with the model DFlowz (Berti and Simoni, 2007): derived form the implementation of the empirical relations between event volume and planimetric and cross section inundated areas, the code allows to delineate areas affected by an event by taking into account information about volume, preferential flow path and digital elevation model (DEM) of fan area. The analysis uses an objective methodology for evaluating the accuracy of the prediction and involve the calibration of the model based on factors describing the uncertainty associated to the semi empirical relationships. The general assumptions on which the model is based have been verified although the predictive capabilities are influenced by the uncertainties of the empirical scaling relationships, which have to be necessarily taken into account and depend mostly on errors concerning deposited volume estimation. In addition, in order to test prediction capabilities of physical-based models, some events have been simulated through the use of RAMMS (RApid Mass MovementS). The model, which has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF) takes into account a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al., 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the affected area, the maximum depth and the flow velocity in each cell of the input DTM. Relatively to hazard analysis related to watersheds characterization, the database collected by the Alto Adige Province represents an opportunity to examine debris-flow sediment dynamics at the regional scale and analyze lithologic controls. With the aim of advancing current understandings about debris flow, this study focuses on 82 events in order to characterize the topographic conditions associated with their initiation , transportation and deposition, seasonal patterns of occurrence and examine the role played by bedrock geology on sediment transfer.
Resumo:
Oestrogen induction of cell proliferation is critical in carcinogenesis of gynaecologic tissues. The effects of oestrogens are mediated by Oestrogen receptor (ER) ERα and ERβ, which are members of the nuclear steroid receptor superfamily. The balance between the ERα/ERβ levels seems critical during carcinogenesis due to their different role in proliferation and apoptosis. SERMs are a class of drugs targeting ERs used especially in the treatment of breast cancer, that despite their usefulness, cause side effects. Therefore, it’s important to develop new active molecules without side effects. In a previous work Andreani et al.(2007) investigated the antitumor activity of a new class of indole-derivatives in 60 different human cancer cell lines. In particular they noted that compound named 3L was able to induce a strong antiproliferative effect in cell lines derived from breast, cervix, ovary ,CNS and colon. The aim of this thesis is to characterize the biological effect in ovarian carcinoma cells (IGROV-1), colon adenocarcinoma cells (HT29), cervix adenocarcinoma cells (HelaS3) and breast cancer cells (MCF7). Among the effect exerted on the other cell lines, the most interesting is the cytostatic effect on IGROV-1. In order to identify the 3L molecular target we monitored the 3L concentration in the IGROV-1 nuclear fractions. The analysis revealed that the drug localizes in the nucleus starting from 6 hrs after treatment, suggesting a nuclear target. The stimulation with oestrogen did not increase the proliferation rate in 3L treated cells, suggesting a possible involvement with oestrogen receptors. Due to the 3L fluorescent properties, we demonstrated a colocalization between the ER and the 3L compound. In particular, a chromatin binding assay revealed the presence of a 3L-ERβ complex bound to DNA, interaction that may be the cause of the observed antiproliferative effect.
Resumo:
Lo scopo del Progetto Extreme Energy Events (EEE) e` di studiare raggi cosmici di energia estrema, eventi molto rari ma ricchi di informazioni. La grande difficolta` nell'affrontare la fisica dei raggi cosmici di altissima energia risiede nel flusso estremamente basso con cui tali particelle giungono sulla terra. Si utilizzano infatti reti molto estese di rivelatori: le informazioni che si possono ricavare derivano dalla rivelazione delle particelle secondarie prodotte nello sviluppo di sciami estesi di raggi cosmici primari che interagiscono con l'atmosfera terrestre. Il Progetto EEE prevede di dislocare su tutto il territorio italiano un array di telescopi (costituiti da Multi Gap Resistive Plate Chambers) per raggi cosmici secondari. Il lavoro presentato riguarda la simulazione Monte Carlo degli sciami e lo studio delle loro caratteristiche, la simulazione delle prestazioni di griglie di rivelazione differenti ed infine l'analisi dei primi dati raccolti nei telescopi di Bologna, con il conseguente confronto con la simulazione.
Resumo:
Most basaltic volcanoes are affected by recurrent lateral instabilities during their evolution. Numerous factors have been shown to be involved in the process of flank destabilization occurring over long periods of time or by instantaneous failures. However, the role of these factors on the mechanical behaviour and stability of volcanic edifices is poorly-constrained as lateral failure usually results from the combined effects of several parameters. Our study focuses on the morphological and structural comparison of two end-member basaltic systems, La Reunion (Indian ocean, France) and Stromboli (southern Tyrrhenian sea, Italy). We showed that despite major differences on their volumes and geodynamic settings, both systems present some similarities as they are characterized by an intense intrusive activity along well-developed rift zones and recurrent phenomena of flank collapse during their evolution. Among the factors of instability, the examples of la Reunion and Stromboli evidence the major contribution of intrusive complexes to volcano growth and destruction as attested by field observations and the monitoring of these active volcanoes. Classical models consider the relationship between vertical intrusions of magma and flank movements along a preexisting sliding surface. A set of published and new field data from Piton des Neiges volcano (La Reunion) allowed us to recognize the role of subhorizontal intrusions in the process of flank instability and to characterize the geometry of both subvertical and subhorizontal intrusions within basaltic edifices. This study compares the results of numerical modelling of the displacements associated with high-angle and low-angle intrusions within basaltic volcanoes. We use a Mixed Boundary Element Method to investigate the mechanical response of an edifice to the injection of magmatic intrusions in different stress fields. Our results indicate that the anisotropy of the stress field favours the slip along the intrusions due to cointrusive shear stress, generating flank-scale displacements of the edifice, especially in the case of subhorizontal intrusions, capable of triggering large-scale flank collapses on basaltic volcanoes. Applications of our theoretical results to real cases of flank displacements on basaltic volcanoes (such as the 2007 eruptive crisis at La Reunion and Stromboli) revealed that the previous model of subvertical intrusions-related collapse is a likely mechanism affecting small-scale steeply-sloping basaltic volcanoes like Stromboli. Furthermore, our field study combined to modelling results confirms the importance of shallow-dipping intrusions in the morpho-structural evolution of large gently-sloping basaltic volcanoes like Piton de la Fournaise, Etna and Kilauea, with particular regards to flank instability, which can cause catastrophic tsunamis.