330 resultados para riuso, archeologia industriale


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il core catalitico della DNA polimerasi III, composto dalle tre subunità α, ε e θ, è il complesso minimo responsabile della replicazione del DNA cromosomiale in Escherichia coli. Nell'oloenzima, α ed ε possiedono rispettivamente un'attività 5'-3' polimerasica ed un'attività 3'-5' esonucleasica, mentre θ non ha funzioni enzimatiche. Il presente studio si è concentrato sulle regioni del core che interagiscono direttamente con ε, ovvero θ (interagente all'estremità N-terminale di ε) e il dominio PHP di α (interagente all'estremità C-terminale di ε), delle quali non è stato sinora identificato il ruolo. Al fine di assegnare loro una funzione sono state seguite tre linee di ricerca parallele. Innanzitutto il ruolo di θ è stato studiato utilizzando approcci ex-vivo ed in vivo. I risultati presentati in questo studio mostrano che θ incrementa significativamente la stabilità della subunità ε, intrinsecamente labile. Durante gli esperimenti condotti è stata anche identificata una nuova forma dimerica di ε. Per quanto la funzione del dimero non sia definita, si è dimostrato che esso è attivamente dissociato da θ, che potrebbe quindi fungere da suo regolatore. Inoltre, è stato ritrovato e caratterizzato il primo fenotipo di θ associato alla crescita. Per quanto concerne il dominio PHP, si è dimostrato che esso possiede un'attività pirofosfatasica utilizzando un nuovo saggio, progettato per seguire le cinetiche di reazione catalizzate da enzimi rilascianti fosfato o pirofosfato. L'idrolisi del pirofosfato catalizzata dal PHP è stata dimostrata in grado di sostenere l'attività polimerasica di α in vitro, il che suggerisce il suo possibile ruolo in vivo durante la replicazione del DNA. Infine, è stata messa a punto una nuova procedura per la coespressione e purificazione del complesso α-ε-θ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vaginal microbiota of healthy women consists of a wide variety of anaerobic and aerobic bacteria, dominated by the genus Lactobacillus. The activity of lactobacilli is essential to protect women from genital infections and to maintain the natural healthy balance of the vaginal ecosystem. This role is particularly important during pregnancy because vaginal infection is one of the most important mechanisms for preterm birth. The most common vaginal disorder is bacterial vaginosis (BV). BV is a polymicrobial disorder, characterized by a depletion of lactobacilli and an increase in the concentration of other bacteria, including Gardnerella vaginalis, anaerobic Gram-negative rods, anaerobic Gram-positive cocci, Mycoplasma hominis, and Mobiluncus spp. An integrated molecular approach based on real-time PCR and PCR-DGGE was used to investigate the effects of two different therapeutic approaches on the vaginal microbiota composition. (i) The impact of a dietary supplementation with the probiotic VSL#3, a mixture of Lactobacillus, Bifidobacterium and Streptococcus strains, on the vaginal microbial ecology and immunological profiles of healthy women during late pregnancy was investigated. The intake was associated to a slight modulation of the vaginal microbiota and cytokine secretion, with potential implications in preventing preterm birth. (ii) The efficacy of different doses of the antibiotic rifaximin (100 mg/day for 5 days, 25 mg/day for 5 days, 100 mg/day for 2 days) on the vaginal microbiota of patients with BV enrolled in a multicentre, double-blind, randomised, placebo-controlled study was also evaluated. The molecular analyses demonstrated the ability of rifaximin 25 mg/day for 5 days to induce an increase of lactobacilli and a decrease of the BV-associated bacteria after antibiotic treatment, and a reduction of the complexity of the vaginal microbial communities. Thus, confirming clinical results, it represents the most effective treatment to be used in future pivotal studies for the treatment of BV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacterium is an important genus of the human gastrointestinal microbiota, affecting several host physiological features. Despite the numerous Bifidobacterium related health-promoting activities, there is still a dearth of information about the molecular mechanisms at the basis of the interaction between this microorganism and the host. Bacterial surface associated proteins may play an important role in this interaction because of their ability to intervene with host molecules, as recently reported for the host protein plasminogen. Plasminogen is the zymogen of the trypsin-like serine protease plasmin, an enzyme with a broad substrate specificity. Aim of this thesis is to deepen the knowledge about the interaction between Bifidobacterium and the human plasminogen system and its role in the Bifidobacterium-host interaction process. As a bifidobacterial model, B. animalis subsp. lactis BI07 has been used because of its large usage in dairy and pharmaceutical preparations. We started from the molecular characterization of the interaction between plasminogen and one bifidobacterial plasminogen receptor, DnaK, a cell wall protein showing high affinity for plasminogen, and went on with the study of the impact of intestinal environmental factors, such as bile salts and inflammation, on the plasminogen-mediated Bifidobacterium-host interaction. According to our in vitro findings, by enhancing the activation of the bifidobacterial bound plasminogen to plasmin, the host inflammatory response results in the decrease of the bifidobacterial adhesion to the host enterocytes, favouring bacterial migration to the luminal compartment. Conversely, in the absence of inflammation, plasminogen acts as a molecular bridge between host enterocytes and bifidobacteria, enhancing Bifidobacterium adhesion. Furthermore, adaptation to physiological concentrations of bile salts enhances the capability of this microorganism to interact with the host plasminogen system. The host plasminogen system thus represents an important and flexible tool used by bifidobacteria in the cross-talk with the host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the human gut microbiota in impacting host’s health has been widely studied in the last decade. Notably, it has been recently demonstrated that diet and nutritional status are among the most important modifiable determinants of human health, through a plethora of presumptive mechanisms among which microbiota-mediated processes are thought to have a relevant role. At present, probiotics and prebiotics represent a useful dietary approach for influencing the composition and activity of the human gut microbial community. The present study is composed of two main sections, aimed at elucidating the probiotic potential of the yeast strain K. marxianus B0399, as well as the promising putative prebiotic activity ascribable to four different flours, naturally enriched in dietary fibres content. Here, by in vitro studies we demonstrated that K. marxianus B0399 possesses a number of beneficial and strain-specific properties desirable for a microorganism considered for application as a probiotics. Successively, we investigated the impact of a novel probiotic yoghurt containing B. animalis subsp. lactis Bb12 and K. marxianus B0399 on the gut microbiota of a cohort of subjects suffering from IBS and enrolled in a in vivo clinical study. We demonstrated that beneficial effects described for the probiotic yoghurt were not associated to significant modifications of the human intestinal microbiota. Additionally, using a colonic model system we investigated the impact of different flours (wholegrain rye and wheat, chickpeas and lentils 50:50, and barley milled grains) on the intestinal microbiota composition and metabolomic output, combining molecular and cellular analysis with a NMR metabolomics approach. We demonstrated that each tested flour showed peculiar and positive modulations of the intestinal microbiota composition and its small molecule metabolome, thus supporting the utilisation of these ingredients in the development of a variety of potentially prebiotic food products aimed at improving human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recenti analisi sull’intero trascrittoma hanno rivelato una estensiva trascrizione di RNA non codificanti (ncRNA), le quali funzioni sono tuttavia in gran parte sconosciute. In questo lavoro è stato dimostrato che alte dosi di camptotecina (CPT), un farmaco antitumorale inibitore della Top1, aumentano la trascrizione di due ncRNA antisenso in 5’ e 3’ (5'aHIF-1α e 3'aHIF-1α rispettivamente) al locus genico di HIF-1α e diminuiscono i livelli dell’mRNA di HIF-1α stesso. Gli effetti del trattamento sono Top1-dipendenti, mentre non dipendono dal danno al DNA alla forca di replicazione o dai checkpoint attivati dal danno al DNA. I ncRNA vengono attivati in risposta a diversi tipi di stress, il 5'aHIF-1α è lungo circa 10 kb e possiede sia il CAP in 5’ sia poliadenilazione in 3’ (in letteratura è noto che il 3'aHIF-1α è un trascritto di 1,7 kb, senza 5’CAP né poliadenilazione). Analisi di localizzazione intracellulare hanno dimostrato che entrambi sono trascritti nucleari. In particolare 5'aHIF-1α co-localizza con proteine del complesso del poro nucleare, suggerendo un suo possibile ruolo come mediatore degli scambi della membrana nucleare. È stata dimostrata inoltre la trascrizione dei due ncRNA in tessuti di tumore umano del rene, evidenziandone possibili ruoli nello sviluppo del cancro. È anche noto in letteratura che basse dosi di CPT in condizioni di ipossia diminuiscono i livelli di proteina di HIF-1α. Dopo aver dimostrato su diverse linee cellulari che i due ncRNA sopracitati non potessero essere implicati in tale effetto, abbiamo studiato le variazioni dell’intero miRnoma alle nuove condizioni sperimentali. In tal modo abbiamo scoperto che il miR-X sembra essere il mediatore molecolare dell’abbattimento di HIF-1α dopo trattamento con basse dosi di CPT in ipossia. Complessivamente, questi risultati suggeriscono che il fattore di trascrizione HIF-1α venga finemente regolato da RNA non-codificanti indotti da danno al DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mediterranean diet is rich in healthy substances such as fibres, vitamins and phenols. Often these molecules are lost during food processing. Olive oil milling waste waters, brans, grape skins are some of the most relevant agri-food by-products in the Mediterranean countries. These wastes are still rich in extremely valuable molecules, such as phenolic antioxidants, that have several interesting health promoting properties. Using innovative environmental friendly technologies based in the rational use of enzymatic treatment is possible to obtain from agri-food by-products new ingredients containing antioxidants that can be used as functional ingredients in order to produce fortified foods. These foods, having health protecting/promoting properties, on top of the traditional nutritional properties, are attracting consumer’s attentions due to the increasing awareness on health protection through prevention. The use of these new ingredients in different food preparation was studied in order to evaluate the effects that the food processing might have on the antioxidant fraction, the effect of these ingredient on foods appearances as well as the impact in terms of taste and scent, crucial feature for the acceptability of the final product. Using these new ingredients was possible to produce antioxidant bred, pasta, cheese, cookies and ice-cream. These food products retains very well the antioxidant properties conferred by the added ingredients despite the very different treatments that were performed. The food obtained had a good palatability and in some cases the final product had also a good success on the market.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past few years, the switch towards renewable sources for energy production is considered as necessary for the future sustainability of the world environment. Hydrogen is one of the most promising energy vectors for the stocking of low density renewable sources such as wind, biomasses and sun. The production of hydrogen by the steam-iron process could be one of the most versatile approaches useful for the employment of different reducing bio-based fuels. The steam iron process is a two-step chemical looping reaction based (i) on the reduction of an iron-based oxide with an organic compound followed by (ii) a reoxidation of the reduced solid material by water, which lead to the production of hydrogen. The overall reaction is the water oxidation of the organic fuel (gasification or reforming processes) but the inherent separation of the two semireactions allows the production of carbon-free hydrogen. In this thesis, steam-iron cycle with methanol is proposed and three different oxides with the generic formula AFe2O4 (A=Co,Ni,Fe) are compared in order to understand how the chemical properties and the structural differences can affect the productivity of the overall process. The modifications occurred in used samples are deeply investigated by the analysis of used materials. A specific study on CoFe2O4-based process using both classical and in-situ/ex-situ analysis is reported employing many characterization techniques such as FTIR spectroscopy, TEM, XRD, XPS, BET, TPR and Mössbauer spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the amount of Nb, used as a dopant for VPP, and how its presence may affect the generation of the active and selective δ-VOPO4 at the VPP surface under reaction conditions, was investigated, employing ex-situ and in-situ characterisation techniques. We found that Nb indeed may favour, under specific conditions, the generation of the desired δ-VOPO4 compound; however, its effect of enhancement of catalytic behaviour was not simply proportional to its concentration. In order to better understand how Nb may affect the generation of the active phase, we prepared V/Nb mixed phosphates; the formation of a solid solution was possible only under specific conditions, with a limited reciprocal dissolution of the two elements. We concluded that even though the incorporation of small amounts of Nb5+ in the VOPO4 (and also of V5+ in NbOPO4) cannot be excluded, a phenomenon which might favour the generation of the desired δ-VOPO4 compound, however the main role of Nb5+ was related to a modification of the redox properties of V4+ in the VPP, and specifically of the redox potential associated to the couple V4+/V5+. This led to a catalyst that during reaction was more oxidized than the corresponding undoped VPP, which under specific reaction conditions allowed obtain a better selectivity to MA. Oppositely, an excessive oxidation of VPP (catalysts having high [Nb]) affected negatively the MA selectivity, because of the excessive formation of COx. A preliminary study regarding the oxidehydration of 1-butanol into MA was carried out testing various catalysts: the best catalyst resulted VPP; however the MA selectivity was lower than that obtained from n-butane. With in-situ/operando Raman study of the Nb-doped and undoped catalysts we verified that the redox cycle involves the VPP and the δ-VOPO4 compounds, that the reoxidation step of V4+ in VPP is the rate-determining one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diseases due to mutations in mitochondrial DNA probably represent the most common form of metabolic disorders, including cancer, as highlighted in the last years. Approximately 300 mtDNA alterations have been identified as the genetic cause of mitochondrial diseases and one-third of these alterations are located in the coding genes for OXPHOS proteins. Despite progress in identification of their molecular mechanisms, little has been done with regard to the therapy. Recently, a particular gene therapy approach, namely allotopic expression, has been proposed and optimized, although the results obtained are rather controversial. In fact, this approach consists in synthesis of a wild-type version of mutated OXPHOS protein in the cytosolic compartment and in its import into mitochondria, but the available evidence is based only on the partial phenotype rescue and not on the demonstration of effective incorporation of the functional protein into respiratory complexes. In the present study, we took advantage of a previously analyzed cell model bearing the m.3571insC mutation in MTND1 gene for the ND1 subunit of respiratory chain complex I. This frame-shift mutation induces in fact translation of a truncated ND1 protein then degraded, causing complex I disassembly, and for this reason not in competition with that allotopically expressed. We show here that allotopic ND1 protein is correctly imported into mitochondria and incorporated in complex I, promoting its proper assembly and rescue of its function. This result allowed us to further confirm what we have previously demonstrated about the role of complex I in tumorigenesis process. Injection of the allotopic clone in nude mice showed indeed that the rescue of complex I assembly and function increases tumor growth, inducing stabilization of HIF1α, the master regulator of tumoral progression, and consequently its downstream gene expression activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes mellitus is considered a risk factor for Group B Streptococcus (GBS) infections. Typically, this pathology is associated to high glucose levels in the bloodstream. Although clinical evidences support this notion, the physiological mechanisms underlying GBS adaptation to such conditions are not yet defined. In the attempt to address this issue, we performed comparative global gene expression analysis of GBS grown under glucose-stress conditions and observed that a number of metabolic and virulence genes was differentially regulated. Of importance, we also demonstrated that by knocking-out the csrRS locus the transcription profile of GBS grown in high-glucose conditions was profoundly affected, with more than a third of glucose-dependent genes, including the virulence factor bibA, found to be controlled by this two-component system. Furthermore, in vitro molecular analysis showed that CsrR specifically binds to the bibA promoter and the phosphorilation increases the affinity of the regulator to this promoter region. Moreover, we demonstrated that CsrR acts as a repressor of bibA expression by binding to its promoter in vivo. In conclusion, this work by elucidating both the response of GBS to pathological glucose conditions and the underlined molecular mechanisms will set the basis for a better understanding of GBS pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MYC is a transcription factor that can activate transcription of several targets by direct binding to their promoters at specific DNA sequences (E-box). Recent findings have also shown that it can exert its biological role by repressing transcription of other set of genes. C-MYC can mediate repression on its target genes through interaction with factors bound to promoter regions but not through direct recognition of typical E-Boxes. In this thesis, we investigated whether MYCN can also repress gene transcription and how this is mechanistically achieved. Moreover, expression of TRKA, P75NTR and ABCC3 is attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and transcriptional repression of these three genes. We found that MYCN is physically associated with gene promoters in vivo in proximity of the transcriptional start sites and this association requires interactions with SP1 and/or MIZ-1. Furthermore, we show that this interaction could interfere with SP1 and MIZ-1 activation functions by recruiting co-repressors such as DNMT3a or HDACs. Studies in vitro suggest that MYCN interacts through distinct domains with SP1, MIZ-1 and HDAC1 supporting the idea that MYCN may form different complexes by interacting with different proteins. Re-expression of endogenous TRKA and P75NTR with exposure to the TSA sensitizes neuroblastoma to NGF-mediated apoptosis, whereas ectopic expression of ABCC3 decreases cell motility without interfering with growth. Finally, using shRNA whole genome library, we dissected the P75NTR repression trying to identify novel factors inside and/or outside MYCN complex for future therapeutic approaches. Overall, our results support a model in which MYCN can repress gene transcription by direct interaction with SP1 and/or MIZ-1, and provide further lines of evidence on the importance of transcriptional repression induced by Myc in tumor biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neisseria meningitidis (Nm) is the major cause of septicemia and meningococcal meningitis. During the course of infection, it must adapt to different host environments as a crucial factor for survival. Despite the severity of meningococcal sepsis, little is known about how Nm adapts to permit survival and growth in human blood. A previous time-course transcriptome analysis, using an ex vivo model of human whole blood infection, showed that Nm alters the expression of nearly 30% of ORFs of the genome: major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. Starting from these data, mutagenesis studies of a subset of up-regulated genes were performed and the mutants were tested for the ability to survive in human whole blood; Nm mutant strains lacking the genes encoding NMB1483, NalP, Mip, NspA, Fur, TbpB, and LctP were sensitive to killing by human blood. Then, the analysis was extended to the whole Nm transcriptome in human blood, using a customized 60-mer oligonucleotide tiling microarray. The application of specifically developed software combined with this new tiling array allowed the identification of different types of regulated transcripts: small intergenic RNAs, antisense RNAs, 5’ and 3’ untranslated regions and operons. The expression of these RNA molecules was confirmed by 5’-3’RACE protocol and specific RT-PCR. Here we describe the complete transcriptome of Nm during incubation in human blood; we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. In addition the tiling array analysis demonstrated that Nm expresses a set of new transcripts, not previously identified, and suggests the presence of a circuit of regulatory RNA elements used by Nm to adapt to proliferate in human blood.