226 resultados para olio RTIL voltammetria ciclica microelettrodo platino frodi alimentari
Resumo:
Sustainability encompasses the presence of three dimensions that must coexist simultaneously, namely the environmental, social, and economic ones. The economic and social dimensions are gaining the spotlight in recent years, especially within food systems. To assess social and economic impacts, indicators and tools play a fundamental role in contributing to the achievements of sustainability targets, although few of them have deepen the focus on social and economic impacts. Moreover, in a framework of citizen science and bottom-up approach for improving food systems, citizen play a key role in defying their priorities in terms of social and economic interventions. This research expands the knowledge of social and economic sustainability indicators within the food systems for robust policy insights and interventions. This work accomplishes the following objectives: 1) to define social and economic indicators within the supply chain with a stakeholder perspective, 2) to test social and economic sustainability indicators for future food systems engaging young generations. The first objective was accomplished through the development of a systematic literature review of 34 social sustainability tools, based on five food supply chain stages, namely production, processing, wholesale, retail, and consumer considering farmers, workers, consumers, and society as stakeholders. The second objective was achieved by defining and testing new food systems social and economic sustainability indicators through youth engagement for informed and robust policy insights, to provide policymakers suggestions that would incorporate young generations ones. Future food systems scenarios were evaluated by youth through focus groups, whose results were analyzed through NVivo and then through a survey with a wider platform. Conclusion addressed the main areas of policy interventions in terms of social and economic aspects of sustainable food systems youth pointed out as in need of interventions, spanning from food labelling reporting sustainable origins to better access to online food services.
Resumo:
Our study focused on Morocco investigating the dissemination of PBs amongst farmers belonging to the first pillar of the GMP, located in the Fès-Meknès region. As well as to assess how innovation adoption is influenced by the network of relationships that various farmers are involved in. We adopted an “ego network” approach to identify the primary stakeholders responsible for the diffusion of PBs. We collected data through “face-to-face” interviews with 80 farmers in April and May 2021. The data were processed with the aim of: 1) analysing the total number of main and specific topics discussed between egos and egos’ alters regarding the variation of some egos attributes; 2) analysing egos’ network characteristics using E-Net software, and 3) identifying the significant variables that influence farmers to access knowledge, use and reuse of PBs a Binary Logistic Regression (LR) was applied. The first result disclosed that the main PBs topics discussed were technical positioning, the need to use PBs, knowledge of PBs, and organic PBs. We noted that farmers have specific features: they have a high school diploma and a bachelor's degree; they are specialised in fruits and cereals farming, and they are managers and members of a professional organisation. The second result showed results of SNA: 1) PBs seem to become generally a common argument for farmers who have already exchanged fertiliser information with their alters; 2) we disclosed a moderate heterogeneity in the networks, farmers have access to information mainly from acquaintances and professionals, and 3) we revealed that networks have a relatively low density and alters are not tightly connected to each other. Farmers have a brokerage position in the networks controlling the flow of information about the PBs. LR revealed that both the farmers’ attributes and the networks’ characteristics influence growers to know, use and reuse PBs.
Resumo:
The present work aims to investigate the potential use of natural substances against bacterial plant pathogens. Microdilution tests were therefore carried out in vitro to identify the minimum inhibitory and bactericidal concentrations (MIC and MBC) of several EOs and Hys against selected bacterial pathogens. Commercial products based on a mixture of EOs were in addition assayed with macrodilution experiments against Erwinia amylovora (Ea-causal agent of fire blight). Subsequently, using selected EOs, Hys, and commercial products, ex vivo tests on disease incidence and Ea population dynamics were carried out; the latter experiment was followed by SEM observations. In addition, in vivo resistance induction test was carried out against bacterial leaf of tomato, caused by Xanthomonas vesicatoria (Xv). EOs and Hys showed high bactericidal activity in vitro (MBC <0.1 and <10% for the most active EOs and Hys: Origanum compactum and Thymus vulgaris EOs and Citrus aurantium var. amara Hy, respectively), but they were not effective ex vivo, while resulted very active when used in vivo as resistance inducers in the tomato-Xv pathosystem (relative protection >40%). Differently, commercial products resulted active in all tests, but not as resistance inducers against Xv. An open field trial with commercial products was carried out on strawberry plants naturally infected with Xanthomonas fragariae; the results showed discrete relative protection, concerning that provided by the conventional products based on copper; mostly, the disease severity reduction on those plants treated with EOs commercial products was significant when disease severity resulted high. The papers already published described in the present work investigate (1)the activity of Hys in comparison to EOs with respect to their active volatile content; (2) the potential use of EOs and Hys in cultural heritage; for the restoration of paintings; (3) the induction of resistance caused by plasma-activated water-based root treatments.
Resumo:
To ensure food safety and to prevent food-borne illnesses, rapid and accurate detection of pathogenic agents is essential. It has already been demonstrated that shotgun metagenomic sequencing can be used to detect pathogens and their antibiotic resistance genes in food. In the studies presented in this thesis, the application shotgun metagenomic sequencing has been applied to investigate both the microbiome and resistome of foods of animal origin in order to assess advantages and disadvantages of shotgun metagenomic sequencing in comparison to the cultural methods. In the first study, it has been shown that shotgun metagenomics can be applied to detect microorganisms experimentally spiked in cold-smoked salmon. Nevertheless, a direct correlation between cell concentration of each spiked microorganism and number of corresponding reads cannot be established yet. In the second and third studies, the microbiomes and resistomes characterizing caeca and the corresponding carcasses of the birds reared in the conventional and antibiotic free farms were compared. The results highlighted the need to reduce sources of microbial contamination and antimicrobial resistance not only at the farm level but also at the post-harvest one. In the fourth study, it has been demonstrated that testing a single aliquot of a food homogenate is representative of the whole homogenate because biological replicates displayed overlapping taxonomic and functional composition. All in all, the results obtained confirmed that the application of shotgun metagenomic sequencing represents a powerful tool that can be used in the identification of both spoilage and pathogenic microorganism, and their resistome in foods of animal origin. However, a robust relationship between sequence read abundance and concentration of colony-forming unit must be still established.
Resumo:
The presented study aimed to evaluate the productive and physiological behavior of a 2D multileader apple training systems in the Italian environment both investigating the possibility to increase yield and precision crop load management resolution. Another objective was to find valuable thinning thresholds guaranteeing high yields and matching fruit market requirements. The thesis consists in three studies carried out in a Pink Lady®- Rosy Glow apple orchard trained as a planar multileader training system (double guyot). Fruiting leaders (uprights) dimension, crop load, fruit quality, flower and physiological (leaf gas exchanges and fruit growth rate) data were collected and analysed. The obtained results found that uprights present dependence among each other and as well as a mutual support during fruit development. However, individual upright fruit load and upright’s fruit load distribution on the tree (~ plant crop load) seems to define both upright independence from the other, and single upright crop load effects on the final fruit quality production. Correlations between fruit load and harvest fruit size were found and thanks to that valuable thinning thresholds, based on different vegetative parameters, were obtained. Moreover, it comes out that an upright’s fruit load random distribution presents a widening of those thinning thresholds, keeping un-altered fruit quality. For this reason, uprights resulted a partially physiologically-dependent plant unit. Therefore, if considered and managed as independent, then no major problems on final fruit quality and production occurred. This partly confirmed the possibility to shift crop load management to single upright. The finding of the presented studies together with the benefits coming from multileader planar training systems suggest a high potentiality of the 2D multileader training systems to increase apple production sustainability and profitability for Italian apple orchard, while easing the advent of automation in fruit production.
Resumo:
Smart Farming Technologies (SFT) is a term used to define the set of digital technologies able not only to control and manage the farm system, but also to connect it to the many disruptive digital applications posed at multiple links along the value chain. The adoption of SFT has been so far limited, with significant differences at country-levels and among different types of farms and farmers. The objective of this thesis is to analyze what factors contributes to shape the agricultural digital transition and to assess its potential impacts in the Italian agri-food system. Specifically, this overall research objective is approached under three different perspectives. Firstly, we carry out a review of the literature that focuses on the determinants of adoption of farm-level Management Information Systems (MIS), namely the most adopted smart farming solutions in Italy. Secondly, we run an empirical analysis on what factors are currently shaping the adoption of SFT in Italy. In doing so, we focus on the multi-process and multi-faceted aspects of the adoption, by overcoming the one-off binary approach often used to study adoption decisions. Finally, we adopt a forward-looking perspective to investigate what the socio-ethical implications of a diffused use of SFT might be. On the one hand, our results indicate that bigger, more structured farms with higher levels of commercial integration along the agri-food supply chain are those more likely to be early adopters. On the other hand, they highlight the need for the institutional and organizational environment around farms to more effectively support farmers in the digital transition. Moreover, the role of several other actors and actions are discussed and analyzed, by highlighting the key role of specific agri-food stakeholders and ad-hoc policies, with the aim to propose a clearer path towards an efficient, fair and inclusive digitalization of the agrifood sector.
Resumo:
Il tema affrontato nella presente ricerca sono le trasformazioni intercorse nella vita quotidiana tra il III e il I secolo a.C. in due colonie latine, Ariminum e Bononia, attraverso le evidenze archeologiche. Vengono indagate su scala locale le conseguenze di un fenomeno di grande portata, la colonizzazione romano-latina, mettendo a fuoco le forme dell’abitare, le tradizioni artigianali e le pratiche alimentari. La principale base documentaria sono le testimonianze archeologiche di edilizia domestica e le ceramiche, rinvenute nelle aree di abitato di Rimini e Bologna e nei territori limitrofi. Per cogliere a pieno le trasformazioni intercorse, vengono passate in rassegna le principali caratteristiche del popolamento, dell'architettura domestica e delle ceramiche precedenti la colonizzazione romano-latina. Le due colonie, le abitazioni e le ceramiche sono considerate, inoltre, nel contesto territoriale più ampio, volgendo lo sguardo anche all'area medio-adriatica e alla Cispadana. Allo stesso tempo, sono continui i riferimenti all'Italia medio-tirrenica, poiché permettono di comprendere molte delle evidenze archeologiche e dei processi storici in esame. Il primo capitolo tratta della colonizzazione romano-latina, calata nelle realtà di Rimini e Bologna. La domanda a cui si vuole rispondere è: chi erano gli abitanti delle due colonie? A questo proposito, si affronta anche la questione degli insediamenti precoloniali. Nel secondo capitolo si analizzano le abitazioni urbane. Quali furono le principali innovazioni nell'architettura domestica introdotte dalla colonizzazione? Come cambiarono le forme dell’abitare ad Ariminum e Bononia in età repubblicana? Il terzo capitolo si concentra sulla ceramica per la preparazione e il consumo del cibo nei contesti di abitato. Come cambiarono nelle due città le pratiche alimentari e le tradizioni artigianali utilizzate nella produzione di ceramiche? L'ultimo capitolo discute alcuni quadri teorici applicati ai fenomeni descritti nei capitoli precedenti (romanizzazione, acculturazione, identità, globalizzazione). L'ultimo paragrafo entra nel merito delle trasformazioni avvenute nella vita quotidiana di Ariminum e Bononia.
Resumo:
In the agri-food sector, measurement and monitoring activities contribute to high quality end products. In particular, considering food of plant origin, several product quality attributes can be monitored. Among the non-destructive measurement techniques, a large variety of optical techniques are available, including hyperspectral imaging (HSI) in the visible/near-infrared (Vis/NIR) range, which, due to the capacity to integrate image analysis and spectroscopy, proved particularly useful in agronomy and food science. Many published studies regarding HSI systems were carried out under controlled laboratory conditions. In contrast, few studies describe the application of HSI technology directly in the field, in particular for high-resolution proximal measurements carried out on the ground. Based on this background, the activities of the present PhD project were aimed at exploring and deepening knowledge in the application of optical techniques for the estimation of quality attributes of agri-food plant products. First, research activities on laboratory trials carried out on apricots and kiwis for the estimation of soluble solids content (SSC) and flesh firmness (FF) through HSI were reported; subsequently, FF was estimated on kiwis using a NIR-sensitive device; finally, the procyanidin content of red wine was estimated through a device based on the pulsed spectral sensitive photometry technique. In the second part, trials were carried out directly in the field to assess the degree of ripeness of red wine grapes by estimating SSC through HSI, and finally a method for the automatic selection of regions of interest in hyperspectral images of the vineyard was developed. The activities described above have revealed the potential of the optical techniques for sorting-line application; moreover, the application of the HSI technique directly in the field has proved particularly interesting, suggesting further investigations to solve a variety of problems arising from the many environmental variables that may affect the results of the analyses.
Resumo:
Maize ear fasciation originates from excessive or abnormal proliferation of the ear meristem and usually manifests as multiple-tipped ear, ear flatness and/or disordered kernel arrangement. Ear prolificacy expresses as multiple ears per node. Both traits can affect grain yield. In this study, the genetic control of the two traits was analyzed using two recombinant inbred lines (RIL) populations (B73 × Lo1016 and Lo964 × Lo1016) with Lo1016 and Lo964 as donors of ear fasciation and prolificacy, respectively. Four ear fasciation-related traits (ear fasciation, kernel distribution and ear ovality indexes and ratio of ear diameters), number of kernel rows, ear prolificacy and number of tillers were phenotyped in multi-year field experiments. Ear fasciation traits and number of kernel rows showed relatively high heritability (h2 > 0.5) except ratio of ear diameters, and showed correlation. Prolificacy and tillering h2 ranged 0.41 - 0.78 and did not correlate. QTL mapping identified four QTL for ear fasciation, on chr. 1 (two QTLs), 5 and 7, the latter two overlapping with QTLs for number of kernel rows. However, the strongest effect QTL for number of kernel rows mapped on chr. 2 independently from ear fasciation. Four and five non-overlapping QTLs were mapped for ear prolificacy and tillering, respectively. Two ear fasciation QTLs from this study, qFas1.2 and qFas7, overlapped with formerly known fasciation QTLs and spanned candidate genes expressed in ear meristems namely compact plant2 and ramosa1. Our study identified novel ear fasciation, ear prolificacy and tillering loci which are unexpectedly still segregating in elite maize materials, and provides foundation for genomics-assisted breeding for yield components
Resumo:
There are only a few insights concerning the influence that agronomic and management variability may have on superficial scald (SS) in pears. Abate Fétel pears were picked during three seasons (2018, 2019 and 2020) from thirty commercial orchards in the Emilia Romagna region, Italy. Using a multivariate statistical approach, high heterogeneity between farms for SS development after cold storage with regular atmosphere was demonstrated. Indeed, some factors seem to affect SS in all growing seasons: high yields, soil texture, improper irrigation and Nitrogen management, use of plant growth regulators, late harvest, precipitations, Calcium and cow manure, presence of nets, orchard age, training system and rootstock. Afterwards, we explored the spatio/temporal variability of fruit attributes in two pear orchards. Environmental and physiological spatial variables were recorded by a portable RTK GPS. High spatial variability of the SS index was observed. Through a geostatistical approach, some characteristics, including soil electrical conductivity and fruit size, have been shown to be negatively correlated with SS. Moreover, regression tree analyses were applied suggesting the presence of threshold values of antioxidant capacity, total phenolic content, and acidity against SS. High pulp firmness and IAD values before storage, denoting a more immature fruit, appeared to be correlated with low SS. Finally, a convolution neural networks (CNN) was tested to detect SS and the starch pattern index (SPI) in pears for portable device applications. Preliminary statistics showed that the model for SS had low accuracy but good precision, and the CNN for SPI denoted good performances compared to the Ctifl and Laimburg scales. The major conclusion is that Abate Fétel pears can potentially be stored in different cold rooms, according to their origin and quality features, ensuring the best fruit quality for the final consumers. These results might lead to a substantial improvement in the Italian pear industry.
Resumo:
The agricultural sector is undoubtedly one of the sectors that has the greatest impact on the use of water and energy to produce food. The circular economy allows to reduce waste, obtaining maximum value from products and materials, through the extraction of all possible by-products from resources. Circular economy principles for agriculture include recycling, processing, and reusing agricultural waste in order to produce bioenergy, nutrients, and biofertilizers. Since agro-industrial wastes are principally composed of lignin, cellulose, and hemicellulose they can represent a suitable substrate for mushroom growth and cultivation. Mushrooms are also considered healthy foods with several medicinal properties. The thesis is structured in seven chapters. In the first chapter an introduction on the water, energy, food nexus, on agro-industrial wastes and on how they can be used for mushroom cultivation is given. Chapter 2 details the aims of this dissertation thesis. In chapters three and four, corn digestate and hazelnut shells were successfully used for mushroom cultivation and their lignocellulosic degradation capacity were assessed by using ATR-FTIR spectroscopy. In chapter five, through the use of the Surface-enhanced Raman Scattering (SERS) spectroscopy was possible to set-up a new method for studying mushroom composition and for identifying different mushroom species based on their spectrum. In chapter six, the isolation of different strains of fungi from plastic residues collected in the fields and the ability of these strains to growth and colonizing the Low-density Polyethylene (LDPE) were explored. The structural modifications of the LDPE, by the most efficient fungal strain, Cladosporium cladosporioides Clc/1 strain were monitored by using the Scanning Electron Microscope (SEM) and ATR-FTIR spectroscopy. Finally, chapter seven outlines the conclusions and some hints for future works and applications are provided.
Resumo:
Among the various aspects to be investigated for a technological and productive upgrade of tomato greenhouse production in the Mediterranean area, the application of supplementary LED interlighting still shows limited interest. However, high-density tomato cultivation with intensive high-wire systems could lead to mutual shading and consequent reduction in photosynthesis and yield, even in case of appreciable amounts of external solar radiation, as in Southern Europe. Applications of interest could also involve off-season production or Building-Integrated Agriculture (BIA) such as rooftop greenhouses, where municipal regulations for structure and fire safety could limit the incoming radiation in the growing area. The aim of this research was to investigate diversified applications of supplemental LED interlighting for greenhouse tomato production (Solanum lycopersicum) in the Mediterranean countries. The diversified applications included: effects on post-harvest quality, shading reduction in BIA, tailored seedlings production, and off-season cultivation. The results showed that the application of supplemental LED light on greenhouse-grown tomato in Mediterranean countries (Italy and Spain) has potential to foster diverse applications. In particular, it can increase production in case of the limited solar radiation in rooftop greenhouses, maintain quality and reduce losses during post-harvest, help producing high quality and tailored seedlings, and increase yield during wintertime. Despite the positive results obtained, some aspects of the application of additional LED light in Southern Europe countries still need to be deepened and improved. In particular, given the current increase of electricity cost, future research should focus on more economically valuable methods of managing supplemental lighting, such as the application of shorter photoperiods or lower intensities, or techniques that can provide energy savings such as the pulsed light.
Resumo:
Trace Elements (TEs) pollution is a significant environmental concern due to its toxic effects on human and ecosystem health and its potential to bioaccumulate in the food chain and to threaten species survival, leading to a decline in biodiversity. Urban areas, industrial and mining activities, agricultural practices, all contribute to the release of TEs into the environment posing a significant risk to human health and ecosystems. Several techniques have been developed to control TEs into the environment. This work presents the findings of three-year PhD program that focused on research on TEs pollution. The study discusses three fundamental aspects related to this topic from the perspective of sustainable development, environmental and human health. (1) High levels of TEs contamination prevent the use of sewage sludge (SS) as a fertilizer in agriculture, despite its potential as a soil amendment. Developing effective techniques to manage TEs contamination in SS is critical to ensure its safe use in agriculture and promote resource efficiency through sludge reuse. Another purpose of the study was to evaluate different strategies to limit the TEs uptake by horticultural crops (specifically, Cucumis Melo L.). This study addressed the effect of seasonality, Trichoderma inoculation and clinoptilolite application on chromium (Cr), copper (Cu) and lead (Pb) content of early- and late-ripening cultivars of Cucumis Melo L.. Finally, the accumulation of copper and the effect of its bioavailable fraction on bacterial and fungal communities in the rhizosphere soil of two vineyards, featuring two different varieties of Vitis vinifera grown for varying lengths of time, were evaluated.
Resumo:
Introduction Only a proportion of patients with advanced NSCLC benefit from Immune checkpoint blockers (ICBs). No biomarker is validated to choose between ICBs monotherapy or in combination with chemotherapy (Chemo-ICB) when PD-L1 expression is above 50%. The aim of the present study is to validate the biomarker validity of total Metabolic Tumor Volume (tMTV) as assessed by 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET) Material and methods This is a multicentric retrospective study. Patients with advanced NSCLC treated with ICBs, chemotherapy plus ICBs and chemotherapy were enrolled in 12 institutions from 4 countries. Inclusion criteria was a positive PET scan performed within 42 days from treatment start. TMTV was analyzed at each center based on a 42% SUVmax threshold. High tMTV was defined ad tMTV>median Results 493 patients were included, 163 treated with ICBs alone, 236 with chemo-ICBs and 94 with CT. No correlation was found between PD-L1 expression and tMTV. Median PFS for patients with high tMTV (100.1 cm3) was 3.26 months (95% CI 1.94–6.38) vs 14.70 (95% CI 11.51–22.59) for those with low tMTV (p=0.0005). Similarly median OS for pts with high tMTV was 11.4 months (95% CI 8.42 – 19.1) vs 33.1 months for those with low tMTV (95% CI 22.59 – NA), p .00067. In chemo-ICBs treated patients no correlation was found for OS (p = 0.11) and a borderline correlation was found for PFS (p=0.059). Patients with high tMTV and PD-L1 ≥ 50% had a better PFS when treated with combination of chemotherapy and ICBs respect to ICBs alone, with 3.26 months (95% CI 1.94 – 5.79) for ICBs vs 11.94 (95% CI 5.75 – NA) for Chemo ICBs (p = 0.043). Conclusion tMTV is predictive of ICBs benefit, not to CT benefit. tMTV can help to select the best upfront strategy in patients with high tMTV.
Resumo:
Induced mutagenesis has been exploited for crop improvement and for investigating gene function and regulation. To unravel molecular mechanisms of stress resilience, we applied state-of-the-art genomics-based gene cloning methods to barley mutant lines showing altered root and shoot architecture and disease lesion mimic phenotypes. With a novel method that we named complementation by sequencing, we cloned NEC3, the causal gene for an orange-spotted disease lesion mimic phenotype. NEC3 belongs to the CYP71P1 gene family and it is involved in serotonin biosynthesis. By comparative phylogenetic analysis we showed that CYP71P1 emerged early in angiosperm evolution but was lost in some lineages including Arabidopsis thaliana. By BSA-Seq, we cloned the gene whose mutation increased leaf width, and we showed that the gene corresponded to the previously cloned BROADLEAF1. By BSA coupled to WGS sequencing, we cloned EGT1 and EGT2, two genes that regulate root gravitropic set point angle. EGT1 encodes a Tubby-like F-box protein and EGT2 encodes a Sterile Alpha Motive protein; EGT2 is phylogenetically related to AtSAM5 in Arabidopsis and to WEEP in peach where it regulates branch angle. Both EGT1 and EGT2 are conserved in wheat. We hypothesized that both participate to an anti-gravitropic offset mechanism since their disruption causes mutant roots to grow along the gravity vector. By the MutMap+ method, we cloned the causal gene of a short and semi-rigid root mutant and found that it encodes for an endoglucanase and is the ortholog of OsGLU3 in rice whose mutant has the same phenotype, suggesting that the gene is conserved in barley and rice. The mutants and the corresponding genes which were cloned in this work are involved in the response to stress and can potentially contribute to crop adaptation.