236 resultados para Energia geotermica, energie rinnovabili, geotermico, calore della terra
Resumo:
This work is focused on the analysis of sea–level change (last century), based mainly on instrumental observations. During this period, individual components of sea–level change are investigated, both at global and regional scales. Some of the geophysical processes responsible for current sea-level change such as glacial isostatic adjustments and current melting terrestrial ice sources, have been modeled and compared with observations. A new value of global mean sea level change based of tide gauges observations has been independently assessed in 1.5 mm/year, using corrections for glacial isostatic adjustment obtained with different models as a criterion for the tide gauge selection. The long wavelength spatial variability of the main components of sea–level change has been investigated by means of traditional and new spectral methods. Complex non–linear trends and abrupt sea–level variations shown by tide gauges records have been addressed applying different approaches to regional case studies. The Ensemble Empirical Mode Decomposition technique has been used to analyse tide gauges records from the Adriatic Sea to ascertain the existence of cyclic sea-level variations. An Early Warning approach have been adopted to detect tipping points in sea–level records of North East Pacific and their relationship with oceanic modes. Global sea–level projections to year 2100 have been obtained by a semi-empirical approach based on the artificial neural network method. In addition, a model-based approach has been applied to the case of the Mediterranean Sea, obtaining sea-level projection to year 2050.
Resumo:
A method for automatic scaling of oblique ionograms has been introduced. This method also provides a rejection procedure for ionograms that are considered to lack sufficient information, depicting a very good success rate. Observing the Kp index of each autoscaled ionogram, can be noticed that the behavior of the autoscaling program does not depend on geomagnetic conditions. The comparison between the values of the MUF provided by the presented software and those obtained by an experienced operator indicate that the procedure developed for detecting the nose of oblique ionogram traces is sufficiently efficient and becomes much more efficient as the quality of the ionograms improves. These results demonstrate the program allows the real-time evaluation of MUF values associated with a particular radio link through an oblique radio sounding. The automatic recognition of a part of the trace allows determine for certain frequencies, the time taken by the radio wave to travel the path between the transmitter and receiver. The reconstruction of the ionogram traces, suggests the possibility of estimating the electron density between the transmitter and the receiver, from an oblique ionogram. The showed results have been obtained with a ray-tracing procedure based on the integration of the eikonal equation and using an analytical ionospheric model with free parameters. This indicates the possibility of applying an adaptive model and a ray-tracing algorithm to estimate the electron density in the ionosphere between the transmitter and the receiver An additional study has been conducted on a high quality ionospheric soundings data set and another algorithm has been designed for the conversion of an oblique ionogram into a vertical one, using Martyn's theorem. This allows a further analysis of oblique soundings, throw the use of the INGV Autoscala program for the automatic scaling of vertical ionograms.
Resumo:
An extensive study of the morphology and the dynamics of the equatorial ionosphere over South America is presented here. A multi parametric approach is used to describe the physical characteristics of the ionosphere in the regions where the combination of the thermospheric electric field and the horizontal geomagnetic field creates the so-called Equatorial Ionization Anomalies. Ground based measurements from GNSS receivers are used to link the Total Electron Content (TEC), its spatial gradients and the phenomenon known as scintillation that can lead to a GNSS signal degradation or even to a GNSS signal ‘loss of lock’. A new algorithm to highlight the features characterizing the TEC distribution is developed in the framework of this thesis and the results obtained are validated and used to improve the performance of a GNSS positioning technique (long baseline RTK). In addition, the correlation between scintillation and dynamics of the ionospheric irregularities is investigated. By means of a software, here implemented, the velocity of the ionospheric irregularities is evaluated using high sampling rate GNSS measurements. The results highlight the parallel behaviour of the amplitude scintillation index (S4) occurrence and the zonal velocity of the ionospheric irregularities at least during severe scintillations conditions (post-sunset hours). This suggests that scintillations are driven by TEC gradients as well as by the dynamics of the ionospheric plasma. Finally, given the importance of such studies for technological applications (e.g. GNSS high-precision applications), a validation of the NeQuick model (i.e. the model used in the new GALILEO satellites for TEC modelling) is performed. The NeQuick performance dramatically improves when data from HF radar sounding (ionograms) are ingested. A custom designed algorithm, based on the image recognition technique, is developed to properly select the ingested data, leading to further improvement of the NeQuick performance.
Towards the 3D attenuation imaging of active volcanoes: methods and tests on real and simulated data
Resumo:
The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.
Resumo:
Over the past ten years, the cross-correlation of long-time series of ambient seismic noise (ASN) has been widely adopted to extract the surface-wave part of the Green’s Functions (GF). This stochastic procedure relies on the assumption that ASN wave-field is diffuse and stationary. At frequencies <1Hz, the ASN is mainly composed by surface-waves, whose origin is attributed to the sea-wave climate. Consequently, marked directional properties may be observed, which call for accurate investigation about location and temporal evolution of the ASN-sources before attempting any GF retrieval. Within this general context, this thesis is aimed at a thorough investigation about feasibility and robustness of the noise-based methods toward the imaging of complex geological structures at the local (∼10-50km) scale. The study focused on the analysis of an extended (11 months) seismological data set collected at the Larderello-Travale geothermal field (Italy), an area for which the underground geological structures are well-constrained thanks to decades of geothermal exploration. Focusing on the secondary microseism band (SM;f>0.1Hz), I first investigate the spectral features and the kinematic properties of the noise wavefield using beamforming analysis, highlighting a marked variability with time and frequency. For the 0.1-0.3Hz frequency band and during Spring- Summer-time, the SMs waves propagate with high apparent velocities and from well-defined directions, likely associated with ocean-storms in the south- ern hemisphere. Conversely, at frequencies >0.3Hz the distribution of back- azimuths is more scattered, thus indicating that this frequency-band is the most appropriate for the application of stochastic techniques. For this latter frequency interval, I tested two correlation-based methods, acting in the time (NCF) and frequency (modified-SPAC) domains, respectively yielding esti- mates of the group- and phase-velocity dispersions. Velocity data provided by the two methods are markedly discordant; comparison with independent geological and geophysical constraints suggests that NCF results are more robust and reliable.
Resumo:
A critical point in the analysis of ground displacements time series is the development of data driven methods that allow the different sources that generate the observed displacements to be discerned and characterised. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows reducing the dimensionality of the data space maintaining most of the variance of the dataset explained. Anyway, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. The Independent Component Analysis (ICA) is a popular technique adopted to approach this problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, I use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here I present the application of the vbICA technique to GPS position time series. First, I use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise) and a volcanic source, and I study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, I apply vbICA to different tectonically active scenarios, such as the 2009 L'Aquila (central Italy) earthquake, the 2012 Emilia (northern Italy) seismic sequence, and the 2006 Guerrero (Mexico) Slow Slip Event (SSE).
Resumo:
Evaluating the nature of the earliest, often controversial, traces of life in the geological record (dating to the Palaeoarchaean, up to ~3.5 billion years before the present) is of fundamental relevance for placing constraints on the potential that life emerged on Mars at approximately the same time (the Noachian period). In their earliest histories, the two planets shared many palaeoenvironmental similarities, before the surface of Mars rapidly became inhospitable to life as we know it. Multi-scalar, multi-modal analyses of fossiliferous rocks from the Barberton greenstone belt of South Africa and the East Pilbara terrane of Western Australia are a window onto primitive prokaryotic ecoystems. Complementary petrographic, morphological, (bio)geochemical and nanostructural analyses of chert horizons and the carbonaceous material within using a wide range of techniques – including optical microscopy, SEM-EDS, Raman spectroscopy, PIXE, µCT, laser ablation ICP-MS, high-resolution TEM-based analytical techniques and secondary ion mass spectrometry – can characterise, at scales from macroscopic to nanoscopic, the fossilised biomes of the earliest Earth. These approaches enable the definition of the palaeoenvironments, and potentially metabolic networks, preserved in ancient rocks. Modifying these protocols is necessary for Martian exploration using rovers, since the range and power of space instrumentation is significantly reduced relative to terrestrial laboratories. Understanding the crucial observations possible using highly complementary rover-based payloads is therefore critical in scientific protocols aiming to detect traces of life on Mars.
Resumo:
Cereals, and in particular wheat, have always been recognized as a fundamental food worldwide. In particular, the success of wheat is linked with unique properties of the gluten protein fraction used in bread making process to obtain products that are widely used in traditional and modern diets. The rapid increase in the world population let to a parallel increases in food production, particularly of wheat. Increasing yield potential and selection of cultivars much more resistant to plant disease and to environmental factors could have negatively affected the quality of the grain. Moreover, the “green revolution” was characterized by a widespread use of agricultural chemicals and by industrialization of food production that led to a huge rise in the consumption of refined products. Modern baking practices have shortened bread leavening, increased the use of chemical/yeast leavening agents and there is well-documented scientific evidence of the negative effects of ultra-processed food in human healthy. All this changes profoundly modified the human diet and, as a result, may have affected Gluten-related disease (GRDs) that has arisen in the whole word populations. Gluten-related diseases (GRDs) are multifactorial pathologies in which environmental factors and genetic background contribute to a low-grade chronic inflammation of the gastrointestinal tract. Here, I investigated the potential pro-inflammatory effect of different wheat varieties and whether bread making processing are involved in the onset or worsening of gut inflammation. In vitro, ex vivo and in vivo studies conducted throughout my Phd period have shown a pro-inflammatory effect of wheat especially marked in modern varieties and a higher inflammatory response linked to the use of common raising agent as Saccharomyces Cerevisiae and to the addiction of chemical bakery improver substances.
Resumo:
The present thesis focuses on the on-fault slip distribution of large earthquakes in the framework of tsunami hazard assessment and tsunami warning improvement. It is widely known that ruptures on seismic faults are strongly heterogeneous. In the case of tsunamigenic earthquakes, the slip heterogeneity strongly influences the spatial distribution of the largest tsunami effects along the nearest coastlines. Unfortunately, after an earthquake occurs, the so-called finite-fault models (FFM) describing the coseismic on-fault slip pattern becomes available over time scales that are incompatible with early tsunami warning purposes, especially in the near field. Our work aims to characterize the slip heterogeneity in a fast, but still suitable way. Using finite-fault models to build a starting dataset of seismic events, the characteristics of the fault planes are studied with respect to the magnitude. The patterns of the slip distribution on the rupture plane, analysed with a cluster identification algorithm, reveal a preferential single-asperity representation that can be approximated by a two-dimensional Gaussian slip distribution (2D GD). The goodness of the 2D GD model is compared to other distributions used in literature and its ability to represent the slip heterogeneity in the form of the main asperity is proven. The magnitude dependence of the 2D GD parameters is investigated and turns out to be of primary importance from an early warning perspective. The Gaussian model is applied to the 16 September 2015 Illapel, Chile, earthquake and used to compute early tsunami predictions that are satisfactorily compared with the available observations. The fast computation of the 2D GD and its suitability in representing the slip complexity of the seismic source make it a useful tool for the tsunami early warning assessments, especially for what concerns the near field.
Resumo:
Questo lavoro di tesi è finalizzato allo studio delle morfodinamiche fluviali in ambiente montano, in risposta a forzanti antropiche e naturali. In particolare, si prendono in considerazione sistemi Appenninici (i.e., Fiume Santerno) e Alpini (i.e., Rii Grigno, Tolvà e Ussaia), integrando due approcci che si sviluppano su scale spazio-temporali differenti. Nel caso Appenninico vengono esaminati i cambiamenti planimetrici dell’alveo attivo del Fiume Santerno in risposta ad impatti antropici, quali l’estrazione di inerti in alveo, la costruzione di opere idrauliche e l’alterazione di uso del suolo a scala di bacino. Nei tre casi Alpini, che si differenziano in termini di forzante idro-meteorologica ed apporto di sedimento da monte, si è valutato il trasporto solido di fondo (bedload transport) mediante tecnologia RFID.
Resumo:
Microplastics (MP) are omnipresent contaminants in the marine environment. Ingestion of MP has been reported for a wide range of marine biota, but to what extent the uptake by organisms affects the dynamics and fate of MP in the marine system has received little attention. My thesis explored this topic by integrating laboratory tests and experiments, field quantitative surveys of MP distribution and dynamics, and the use of specialised analytical techniques such as Attenuated-Total-Reflectance- (ATR) and imaging- Fourier Transformed Infrared Spectroscopy (FTIR). I compared different methodologies to extract MP from wild invertebrate specimens, and selected the use of potassium hydroxide (KOH) as the most cost-effective approach. I used this approach to analyse the MP contamination in various invertebrate species with different ecological traits from European salt marshes. I found that 96% of the analysed specimens (330) did not contain any MP. As preliminary environmental analyses showed high levels of environmental MP contamination, I hypothesised that most MP do not accumulate into organisms but are rather fast egested. I subsequently used laboratory multi-trophic experiments and a long-term field experiment using the filter-feeding mussel Mytilus galloprovincialis and the detritus feeding polychaete Hediste diversicolor to test the aforementioned hypothesis. Overall, results showed that MP are ingested but rapidly egested by marine invertebrates, which may limit MP transfer via predator-prey interactions but at the same time enhance their transfer via detrital pathways in the sediments. These processes seem to be extremely variable over time, with potential unexplored environmental consequences. This rapid dynamics also limits the conclusions that can be derived from static observations of MP contents in marine organisms, not fully capturing the real levels of potential contaminations by marine species. This emphasises the need to consider such dynamics in future work to measure the uptake rates by organisms in natural systems.
Resumo:
Since the study of Large Dam Reservoirs is of worldwide interest, in this PhD project we investigated the Ridracoli reservoir, one of the main water supply in Emilia-Romagna (north-eastern Italy). This work aims to characterize waters and sediments to better understand their composition, interactions and any process that occurs, for a better geochemical and environmental knowledge of the area. Physical and chemical analyses on the water column have shown an alternation of stratification and mixing of water in the reservoir’s water body due to seasonal variations in temperature and density. In particular, it was observed the establishment, in late summer, of anoxic conditions at the bottom, which in turn affects the concentration and mobility of some elements of concern (e.g. Fe and Mn) for the water quality. Sediments within the reservoir and from surrounding areas were analysed for organic matter, total inorganic composition and grain size, assessing the inter-element relationship, grain size, geological background and damming influences on their chemistry, through descriptive statistics, Principal Component Analysis and Cluster Analysis. The reservoir’s area was also investigated by pseudo total composition (Aqua Regia digestion), degree of elements extractability, and enrichment factors, then analysed and compared to limits by law and literature. Sediment cores, interstitial waters, and benthic chamber data from the bottom were of great interest due to organic matter degradation, early diagenesis, mineral formation at water-sediment interface and observed flows. Finally, leaching test and extraction procedures, of environmental interest, showed peculiar partitioning, both regarding spatial and in-depth distribution, and the absence of pollution. Collectively, our results are useful for the comprehension of processes that occur in water and sediments of Ridracoli reservoir, providing important knowledges on the site that could be relevant for the management of the resource and the planning of future interventions.
Resumo:
Phasmatodea Leach, 1815 (Hexapoda; Insecta) is a polyneopteran order which counts approximately 3000 described species, often known for their remarkable forms of mimicry. In this thesis, I provide a comprehensive systematic framework which includes over 180 species never considered in a phylogenetic framework: the latter can facilitate a better understanding of the processes underlying phasmids evolutionary history. The clade represents in fact an incredible testing ground to study trait evolution and its striking disparity of reproductive strategies and wing morphologies have been of great interest to the evolutionary biology community. Phasmids wings represent one of the first and most notable rejection of Dollo’s law and they played a central role in initiating a long- standing debate on the irreversibility of complex traits loss. Macroevolutionary analyses presented here confirm that wings evolution in phasmids is a reversible process even when possible biases - such as systematic uncertainty and trait-dependent diversification rates - are considered. These findings remark how complex traits can evolve in a dynamic, reversible manner and imply that their molecular groundplan can be preserved despite its phenotypical absence. This concept has been further tested with phylogenetic and transcriptomic approaches in two phasmids parthenogenetic lineages and a bisexual congeneric of the European Bacillus species complex. Leveraging a gene co-expression network approach, male gonad associated genes were retrieved in the bisexual species and then their modifications in the parthenogens were charachterized. Pleiotropy appears to constrain gene modifications associated to male reproductive structures after their loss in parthenogens, so that the lost trait molecular groundplan can be largely preserved in both transcription patterns and sequence evolution. Overall, the results presented in this thesis contribute to shape our understanding of the interplay between the phenotypic and molecular levels in trait evolution.
Resumo:
Marine mussels are exceptionally well-adapted to live in transitional habitats where they are exposed to fluctuating environmental parameters and elevated levels of natural and anthropogenic stressors throughout their lifecycle. However, there is a dearth of information about the molecular mechanisms that assist in dealing with environmental changes. This project aims to investigate the molecular mechanisms governing acclimatory and stress responses of the Mediterranean mussel (Mytilus galloprovincialis) by addressing relevant life stages and environmental stressors of emerging concern. The experimental approach consisted of two phases to explore (i) the physiological processes at early life history and the consequences of plastic pollution and (ii) the adult physiology processes under natural habitats. As the first phase, I employed a plastic leachate (styrene monomer), and polystyrene microplastics to understand the modulation of cytoprotective mechanisms during the early embryo stages. Results revealed the onset of transcriptional impairments of genes involved in MXR-related transporters and other physiological processes induced by styrene and PS-MPs. In the second phase, as a preliminary analysis, microbiota profile of adult mussels at the tissue scale and its surrounding water was explored to understand microbiota structures that may reflect peculiar adaptations to the respective tissue functions. The broader experiment has been implemented to understand the variability of transcriptional profiles in the mussel digestive glands in the natural setting. All the genes employed in this study have shown possibilities to use as molecular biomarker responses throughout the year for monitoring the physiology of mussels living in a particular environment and, in turn, more properly detecting changes in the environment. As a whole, my studies provide insights into the interactions between environmental parameters, and intrinsic characters, and physiology of marine bivalves, and it could help to interpretation of responses correctly under stress conditions and climate change scenarios.
Resumo:
Convergent plate boundaries are sites of sustained chemical exchanges between the Earth’s surface and deep geochemical reservoirs, playing a major role in the global cycle of carbon and sulfur. However, carbon and sulfur recycling processes continue to be hotly debated. A critical gap in the knowledge of the whole subduction factory is given by the limited accessibility to the upper mantle residing above the subducting plate, the so-called mantle wedge. This thesis investigates the carbonate and sulfide metasomatism taking place during the whole metamorphic evolution of a mantle wedge involved in the Variscan continental collision. We integrate different detailed geochemical and petrological techniques to orogenic carbonated spinel and garnet peridotites from the Ulten Zone of the Eastern Italian Alps. Our data show that the Ulten Zone peridotite experienced multiple stages of addition and removal of carbon and sulfur throughout its metamorphic evolution, as follows: (1) The Variscan lithospheric mantle was initially depleted and sulfide-poor. It subsequently inherited a sulfur and carbon component during an early metasomatic stage, when hot, H2S-CO2-bearing melts leaving a subduction-modified source percolated the overlying spinel-facies peridotite in the mantle wedge; (2) Under peak eclogite-facies P-T conditions, pervasive carbonation and sulfidation occurred. Heterogeneous melt and fluid sources variably enriched in carbon, isotopically heavy sulfur and radiogenic Sr were involved; (3) Shortly after the attainment of peak-P conditions, peridotite bodies were incorporated in a tectonic mélange with the neighboring gneisses. Here, the Ulten Zone peridotite was exposed to channelized infiltration of hybridized C-O-H fluids that promoted the formation of veinlets of carbonates locally associated with sulfide grains. (4) Upon late retrogression, infiltration of serpentinizing fluids promoted C and S remobilization at shallow crustal levels.