19 resultados para allo-HSCT, GvL, GvHD, cDNA-expression cloning, allo-reactive T cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two major types of B cells, the antibody-producing cells of the immune system, are classically distinguished in the spleen: marginal zone (MZ) and follicular (FO). In addition, FO B cells are subdivided into FO I and FO II cells, based on the amount of surface IgM. MZ B cells, which surround the splenic follicles, rapidly produce IgM in response to blood-borne pathogens without T cell help, while T cell-dependent production of high affinity, isotype-switched antibodies is ascribed to FO I cells. The significance of FO II cells and the mechanism underlying B cell fate choices are unclear. We showed that FO II cells express more Sca1 than FO I cells and originate from a distinct B cell development program, marked by high expression of Sca1. MZ B cells can derive from the “canonical” Sca1lo pathways, as well as from the Sca1hi program, although the Sca1hi program shows a stronger MZ bias than the Sca1lo program, and extensive phenotypic plasticity exists between MZ and FO II, but not between MZ and FO I cells. The Sca1hi program is induced by hematopoietic stress and generates B cells with an Igλ-enriched repertoire. In aged mice, the canonical B cell development pathway is impaired, while the Sca1hi program is increased. Furthermore, we showed that a population of unknown function, defined as Lin-c-kit+Sca1+ (LSK-), contains early lymphoid precursors, with primarily B cell potential in vivo. Our data suggest that LSK- cells may represent a distinct precursor for the Sca1hi program in the bone marrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolin-1 (Cav-1), the essential structural constituent of caveolae, which are flask-shaped invaginations of the plasma membrane, has been found to play a key role in the modulation of cell proliferation and cancer development. It seems to act as an oncosuppressor or a promoter of growth, depending on the histotype, stage and grade of each tumour. The aim of this study was to analyze the effects of Caveolin-1 gene silencing on the proliferation of human lung cancer and osteosarcoma in vitro. Our data show that Cav-1 silencing blocks the growth in both metastatic lung cancer cell lines analyzed, suggesting a proliferation promoting action of the protein in these cells. A marked decrease of phospho-Akt, phospho-ERK, STAT3, cyclin D1, CDK4 and consequently of phospho-Rb expression was evident in the cells treated with Cav-1 siRNA. With regards to osteosarcoma, we demonstrated that the suppression of Cav-1 results in the blocking of MG-63 and in the slowing down of HOS proliferation, suggesting a role for Cav-1 as a promoter of tumour growth in these cell lines. A marked decrease of phospho-Akt, cyclin E, CDK2 and phospho-Rb and an increase of p21 expression levels were evident in the cells treated with Cav-1 siRNA. Our results suggest two new cell cycle inhibiting pathways, mediated by Cav-1 knock-down, and provide new insights into the molecular mechanisms underlying the tumour-promoting role of Cav-1 in lung cancer and osteosarcoma. In this work we also investigated the role of estrogens in lung cancer and the functional cross-talk between Cav-1 and estrogens/estrogen receptors in it. Our results show that 17β-estradiol induces proliferation either in RAL or in SCLC-R1 cells and that both cell lines are sensitive to 4-OHT antiproliferative effect. The sensitivity to estrogen stimulation seems to be gender- and/or histological type-independent in metastatic lung cancer in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood. The aim of this study was to identify molecular events involved in rhabdomyosarcoma onset for the development of new therapeutic approaches against specific molecular targets. BALB-p53neu mice develop pelvic rhabdomyosarcoma and combines the activation of HER-2/neu oncogene with the inactivation of an allele of p53 oncosuppressor gene. Gene expression profiling led to the identification of genes potentially involved in rhabdomyosarcoma genesis and therefore of candidate targets. The pattern of expression of p53, HER-2/neu, CDKN2A/p19ARF and IGF-2 suggested that these alterations might be involved in gender-, site- and strain-specific development of rhabdomyosarcoma. Other genes such as CDKN1A/p21 might be involved. The role of IGF-2, CDKN2A/p19ARF and CDKN1A/p21 in tumor growth was investigated with siRNA in murine rhabdomyosarcoma cells. Silencing of p19ARF and p21 induced inhibition of growth and of migration ability, indicating a possible pro-tumor and pro-metastatic role in rhabdomyosarcoma in absence of p53. In addition the autocrine IGF-2/IGF-1R loop found in early phases of cancer progression strengthens its key role in sustaining rhabdomyosarcoma growth. As rhabdomyosarcoma displays defective myogenic differentiation, a therapeutic approach aimed at enhancing myogenic differentiation of rhabdomyosarcoma cells. Forced expression of myogenin was able to restore myogenic differentiation, significantly reduced cell motility and impaired tumor growth and metastatic spread. IL-4 treatment increased rhabdomyosarcoma cell growth, decreased myogenin expression and promoted migration of cells lacking myogenin. Another approach was based on small kinase inhibitors. Agents specifically targeting members of the HER family (Lapatinib), of the IGF system (NVP-AEW541) or downstream signal transducers (NVP-BEZ235) were investigated in vitro in human rhabdomyosarcoma cell lines as therapeutic anti-tumor and anti-metastatic tools. The major effects were obtained with NVP-BEZ235 treatment that was able to strongly inhibit cell growth in vitro and showed anti-metastatic effects in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium is an essential element for many biological processes crucial for cell life and proliferation. Growing evidences point out a role for this cation in the apoptotic process and in developing multi drug resistance (MDR) phenotype. The first part of this study aimed to highlight the involvement of the mitochondrial magnesium channel MRS2 in modulating drug-induced apoptosis. We generated an appropriate transgenic cellular system to regulate expression of MRS2 protein. The cells were then exposed to two different apoptotic agents commonly used in chemotherapy. The obtained results showed that cells overexpressing MRS2 channel are less responsiveness to pharmacological insults, looking more resistant to the induced apoptosis. Moreover, in normal condition, MRS2 overexpression induces higher magnesium uptake into isolated mitochondria respect to control cells correlating with an increment of total intracellular magnesium concentration. In the second part of this research we investigated whether magnesium intracellular content and compartmentalization could be used as a signature to discriminate MDR tumour cells from their sensitive counterparts. As MDR model we choose colon carcinoma cell line sensitive and resistant to doxorubicin. We exploited a standard-less approach providing a complete characterization of whole single-cells by combining X-Ray Fluorescence Microscopy , Atomic Force Microscopy and Scanning Transmission X-ray Microscopy. This method allows the quantification of the intracellular spatial distribution and total concentration of magnesium in whole dehydrated cells. The measurements, carried out in 27 single cells, revealed a different magnesium pattern for both concentration and distribution of the element in the two cellular strains. These results were then confirmed by quantifying the total amount of intracellular magnesium in a large populations of cells by using DCHQ5 probe and traditional fluorimetric technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'outcome dei pazienti sottoposti a trapianto allogenico di cellule staminali emopoietiche è fortemente influenzato da graft versus leukemia (GvL) e graft versus host disease (GvHD) che sono mediate, almeno in parte, dagli antigeni minori di istocompatibilità (mHAgs). In letteratura sono stati identificati 26 mHAgs che sono stati correlati a GvHD/GvL con risultati incompleti e in alcuni casi contrastanti; inoltre manca una metodica che sia in grado di genotipizzare contemporaneamente un pannello così ampio. Il lavoro è stato finalizzato alla preparazione di un protocollo di laboratorio che permetta di studiare in modo efficace i 26 mHAgs identificati, per poi correlarli con GvHD/GvL all’interno di uno specifico gruppo di trapiantati. Utilizzando la metodica IPlex Gold Mass Array Sequenom e tecniche di biologia molecolare convenzionale sono stati genotipizzati 26 antigeni minori di istocompatibilità per 46 coppie full-matched. Tutti i pazienti inclusi nel progetto di studio erano stati sottoposti a trapianto allogenico di cellule staminali emopoietiche da donatore familiare o volontario full-compatibile per leucemia mieloide cronica (n=46) o leucemia acuta linfoblastica Philadelphia positiva (LAL-Ph+, n=24). Il progetto ha confermato l'efficienza (98.6%) e la fattibilità delle metodiche proposte. Dal lavoro è inoltre emerso che, le differenze tra donatore e ricevente a libello mHAgs ACC-1, ACC-4, ACC-5, LB-MTHFD1-1Q, UGT2B17, DPH1, LRH1 potrebbero essere fattori predittivi di GvHD (p<0.05). La seconda evidenza è legata a un trend secondo cui il mismatch per LB-ADIR1 protegge dalla recidiva di malattia, in particolare nei confronti della LAL-Ph+ che è scarsamente responsiva all'allo-immunoterapia. Questo lavoro pilota, la cui casistica deve quindi essere ampliata, ha dimostrato l’efficacia della genotipizzazione con IPlex Gold Sequenom e l’elevato potenziale degli mHAgs sia come fattori predittivi di GvHD che come driver di GvL.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water resources management will become increasingly important in agriculture as global warming takes place. Cover crop is largely used in viticultural areas based on the many positive agronomic and environmental benefits it provides. However, it is not clear what effect the cover crop can have on water use in the vineyard. This study is designed to develop a further understanding of the role cover crops play in total water use in the vineyard and develop our understanding of the potential use of cover crops as a water management tool. Two techniques were used to measure cover crop water use, the mini-lysimeters and a portable open chamber and data from both was compared to reference evapotranspiration (ETo) (FAO guidelines). While the mini-lysimeters seemed to be limited in their ability to accurately represent the water use of the surrounding soil, the open chamber method is a reliable and suitable instrument to be used for the accurate measurement of evapotranspiration. Further, the relationship between vineyard grass water use and the contributing environmental factors thought to influence water use were analyzed. A strong relationship between total available radiation and cover crop evapotranspiration was found suggesting the possibility of an indirect method of evapotranspiration measurement in a vineyard grass cover crop. Mowing the cover crop was determined to significantly effect transpiration as shown by both the mini-lysimeter and open chamber, however, the reduction was largely dependent on the growth rate of the grass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our research takes place in the context of a discipline kwown as Communication for Development, sited inside the field of Communication for Social Change, characterized by the use of interpersonal ad mass communication theories and tools, applyied to international development cooperation. Our study aims at pointing out a change of paradigm in this field: our object is Public Administration’s communication, therefore, what we suggest is a shift from Communication for Development, to Development Communication. The object of our study, hence, becomes the discourse itself, in its double action of representation and construction of reality. In particular, we are interested in the discourse’s tribute to the creation of a collective immagination, wich is the perspective towards which we have oriented the analysis, through a structuralist semoitics-based methodology integrated with a socio-semiotic approach. Taking into consideartion the fact that in our contemporary society (that is to say a ‘Western’ and ‘First World’ society), the internet is a crucial public space for the mediation and the management of collective immagination, we chose the web sites of Public Bodies which are dedicated to International Cooperation has our analysis corpus. This, due to their symbolic and ideologic significance, as well as for the actual political responsibility we think these web sites should have. The result of our analysis allows us to suggest some discoursive strategies used in the web sites of Public Bodies. In these sites, there is a tendency to shift the discourses around international cooperation from the ideological axis - avoiding in so doing to explicit a political statement about the causes of injustices and un-balances which lead to the necessity of a support in development (i.e. avoiding to mention values such as social justice and democracy while acknowledging socio-economical institutions which contribute to foster underdevelopment on a global scale) -, to the ethical axis, hence referring to moral values concerning the private sphere (human solidarity and charity), which is delegated mainly to non governamental associations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most actors of the Italian silent cinema in the early 1910s have a theatrical training. Some of them are already asserted or famous actors (like Cesare Dondini, Ermete Novelli, Ermete Zacconi, Giovanni Grasso) who are invited “to pose” for the cinema following their reputation, according to a strategy of an aesthetic and cultural legitimacy launched in 1909 by film d'art of the Pathé Consortium. I think it is the proverbial readiness and strength of the stage Italian actors that create a decisive contribution to the rapid development of the national cinema industry, despite its serious structural deficiencies, from the protoindustrialized phase (1909) to the golden age of divismo (starting in 1913), until the first signs of decadence (1919), and the so-called “fall” of the UCI production and distribution system. This is the main topic of the thesis: an investigation on the Italian stage actors engaged in the film industry (“from stage to screen” as the Italian title says, but in a “post-Vardac” approach) through many different sources: periodicals, memories, personal and business letters, and also contracts, found in several archive funds. A specific chapter is dedicated to the artistic career of Febo Mari (1881-1939), real name Alfredo Rodriguez, witch is a time-sample symptomatic of deep ties established between the growing film publishing and the Italian theatrical production system in the 1910s. The Mari debut in cinema and his ascent toward screen “divo” status coincides with the parable that leads from emergence to decadence of divismo in Italy.