32 resultados para Order systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable computer systems require some flexibility to adapt to environmental unpredictable changes. A solution lies in autonomous software agents which can adapt autonomously to their environments. Though autonomy allows agents to decide which behavior to adopt, a disadvantage is a lack of control, and as a side effect even untrustworthiness: we want to keep some control over such autonomous agents. How to control autonomous agents while respecting their autonomy? A solution is to regulate agents’ behavior by norms. The normative paradigm makes it possible to control autonomous agents while respecting their autonomy, limiting untrustworthiness and augmenting system compliance. It can also facilitate the design of the system, for example, by regulating the coordination among agents. However, an autonomous agent will follow norms or violate them in some conditions. What are the conditions in which a norm is binding upon an agent? While autonomy is regarded as the driving force behind the normative paradigm, cognitive agents provide a basis for modeling the bindingness of norms. In order to cope with the complexity of the modeling of cognitive agents and normative bindingness, we adopt an intentional stance. Since agents are embedded into a dynamic environment, things may not pass at the same instant. Accordingly, our cognitive model is extended to account for some temporal aspects. Special attention is given to the temporal peculiarities of the legal domain such as, among others, the time in force and the time in efficacy of provisions. Some types of normative modifications are also discussed in the framework. It is noteworthy that our temporal account of legal reasoning is integrated to our commonsense temporal account of cognition. As our intention is to build sustainable reasoning systems running unpredictable environment, we adopt a declarative representation of knowledge. A declarative representation of norms will make it easier to update their system representation, thus facilitating system maintenance; and to improve system transparency, thus easing system governance. Since agents are bounded and are embedded into unpredictable environments, and since conflicts may appear amongst mental states and norms, agent reasoning has to be defeasible, i.e. new pieces of information can invalidate formerly derivable conclusions. In this dissertation, our model is formalized into a non-monotonic logic, namely into a temporal modal defeasible logic, in order to account for the interactions between normative systems and software cognitive agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, Intelligent Tutoring Systems have been a very successful way for improving learning experience. Many issues must be addressed until this technology can be defined mature. One of the main problems within the Intelligent Tutoring Systems is the process of contents authoring: knowledge acquisition and manipulation processes are difficult tasks because they require a specialised skills on computer programming and knowledge engineering. In this thesis we discuss a general framework for knowledge management in an Intelligent Tutoring System and propose a mechanism based on first order data mining to partially automate the process of knowledge acquisition that have to be used in the ITS during the tutoring process. Such a mechanism can be applied in Constraint Based Tutor and in the Pseudo-Cognitive Tutor. We design and implement a part of the proposed architecture, mainly the module of knowledge acquisition from examples based on first order data mining. We then show that the algorithm can be applied at least two different domains: first order algebra equation and some topics of C programming language. Finally we discuss the limitation of current approach and the possible improvements of the whole framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present PhD project was focused on the development of new tools and methods for luminescence-based techniques. In particular, the ultimate goal was to present substantial improvements to the currently available technologies for both research and diagnostic in the fields of biology, proteomics and genomics. Different aspects and problems were investigated, requiring different strategies and approaches. The whole work was thus divided into separate chapters, each based on the study of one specific aspect of luminescence: Chemiluminescence, Fluorescence and Electrochemiluminescence. CHAPTER 1, Chemiluminescence The work on luminol-enhancer solution lead to a new luminol solution formulation with 1 order of magnitude lower detection limit for HRP. This technology was patented with Cyanagen brand and is now sold worldwide for Western Blot and ELISA applications. CHAPTER 2, Fluorescescence The work on dyed-doped silica nanoparticles is marking a new milestone in the development of nanotechnologies for biological applications. While the project is still in progress, preliminary studies on model structures are leading to very promising results. The improved brightness of these nano-sized objects, their simple synthesis and handling, their low toxicity will soon turn them, we strongly believe, into a new generation of fluorescent labels for many applications. CHAPTER 3, Electrochemiluminescence The work on electrochemiluminescence produced interesting results that can potentially turn into great improvements from an analytical point of view. Ru(bpy)3 derivatives were employed both for on-chip microarray (Chapter 3.1) and for microscopic imaging applications (Chapter 3.2). The development of these new techniques is still under investigation, but the obtained results confirm the possibility to achieve the final goal. Furthermore the development of new ECL-active species (Chapter 3.3, 3.4, 3.5) and their use in these applications can significantly improve overall performances, thus helping to spread ECL as powerful analytical tool for routinary techniques. To conclude, the results obtained are of strong value to largely increase the sensitivity of luminescence techniques, thus fulfilling the expectation we had at the beginning of this research work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object of the present study is the process of gas transport in nano-sized materials, i.e. systems having structural elements of the order of nanometers. The aim of this work is to advance the understanding of the gas transport mechanism in such materials, for which traditional models are not often suitable, by providing a correct interpretation of the relationship between diffusive phenomena and structural features. This result would allow the development new materials with permeation properties tailored on the specific application, especially in packaging systems. The methods used to achieve this goal were a detailed experimental characterization and different simulation methods. The experimental campaign regarded the determination of oxygen permeability and diffusivity in different sets of organic-inorganic hybrid coatings prepared via sol-gel technique. The polymeric samples coated with these hybrid layers experienced a remarkable enhancement of the barrier properties, which was explained by the strong interconnection at the nano-scale between the organic moiety and silica domains. An analogous characterization was performed on microfibrillated cellulose films, which presented remarkable barrier effect toward oxygen when it is dry, while in the presence of water the performance significantly drops. The very low value of water diffusivity at low activities is also an interesting characteristic which deals with its structural properties. Two different approaches of simulation were then considered: the diffusion of oxygen through polymer-layered silicates was modeled on a continuum scale with a CFD software, while the properties of n-alkanthiolate self assembled monolayers on gold were analyzed from a molecular point of view by means of a molecular dynamics algorithm. Modeling transport properties in layered nanocomposites, resulting from the ordered dispersion of impermeable flakes in a 2-D matrix, allowed the calculation of the enhancement of barrier effect in relation with platelets structural parameters leading to derive a new expression. On this basis, randomly distributed systems were simulated and the results were analyzed to evaluate the different contributions to the overall effect. The study of more realistic three-dimensional geometries revealed a prefect correspondence with the 2-D approximation. A completely different approach was applied to simulate the effect of temperature on the oxygen transport through self assembled monolayers; the structural information obtained from equilibrium MD simulations showed that raising the temperature, makes the monolayer less ordered and consequently less crystalline. This disorder produces a decrease in the barrier free energy and it lowers the overall resistance to oxygen diffusion, making the monolayer more permeable to small molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many research fields are pushing the engineering of large-scale, mobile, and open systems towards the adoption of techniques inspired by self-organisation: pervasive computing, but also distributed artificial intelligence, multi-agent systems, social networks, peer-topeer and grid architectures exploit adaptive techniques to make global system properties emerge in spite of the unpredictability of interactions and behaviour. Such a trend is visible also in coordination models and languages, whenever a coordination infrastructure needs to cope with managing interactions in highly dynamic and unpredictable environments. As a consequence, self-organisation can be regarded as a feasible metaphor to define a radically new conceptual coordination framework. The resulting framework defines a novel coordination paradigm, called self-organising coordination, based on the idea of spreading coordination media over the network, and charge them with services to manage interactions based on local criteria, resulting in the emergence of desired and fruitful global coordination properties of the system. Features like topology, locality, time-reactiveness, and stochastic behaviour play a key role in both the definition of such a conceptual framework and the consequent development of self-organising coordination services. According to this framework, the thesis presents several self-organising coordination techniques developed during the PhD course, mainly concerning data distribution in tuplespace-based coordination systems. Some of these techniques have been also implemented in ReSpecT, a coordination language for tuple spaces, based on logic tuples and reactions to events occurring in a tuple space. In addition, the key role played by simulation and formal verification has been investigated, leading to analysing how automatic verification techniques like probabilistic model checking can be exploited in order to formally prove the emergence of desired behaviours when dealing with coordination approaches based on self-organisation. To this end, a concrete case study is presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, due to the rapid convergence of multimedia services, Internet and wireless communications, there has been a growing trend of heterogeneity (in terms of channel bandwidths, mobility levels of terminals, end-user quality-of-service (QoS) requirements) for emerging integrated wired/wireless networks. Moreover, in nowadays systems, a multitude of users coexists within the same network, each of them with his own QoS requirement and bandwidth availability. In this framework, embedded source coding allowing partial decoding at various resolution is an appealing technique for multimedia transmissions. This dissertation includes my PhD research, mainly devoted to the study of embedded multimedia bitstreams in heterogenous networks, developed at the University of Bologna, advised by Prof. O. Andrisano and Prof. A. Conti, and at the University of California, San Diego (UCSD), where I spent eighteen months as a visiting scholar, advised by Prof. L. B. Milstein and Prof. P. C. Cosman. In order to improve the multimedia transmission quality over wireless channels, joint source and channel coding optimization is investigated in a 2D time-frequency resource block for an OFDM system. We show that knowing the order of diversity in time and/or frequency domain can assist image (video) coding in selecting optimal channel code rates (source and channel code rates). Then, adaptive modulation techniques, aimed at maximizing the spectral efficiency, are investigated as another possible solution for improving multimedia transmissions. For both slow and fast adaptive modulations, the effects of imperfect channel estimation errors are evaluated, showing that the fast technique, optimal in ideal systems, might be outperformed by the slow adaptive modulation, when a real test case is considered. Finally, the effects of co-channel interference and approximated bit error probability (BEP) are evaluated in adaptive modulation techniques, providing new decision regions concepts, and showing how the widely used BEP approximations lead to a substantial loss in the overall performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher-order process calculi are formalisms for concurrency in which processes can be passed around in communications. Higher-order (or process-passing) concurrency is often presented as an alternative paradigm to the first order (or name-passing) concurrency of the pi-calculus for the description of mobile systems. These calculi are inspired by, and formally close to, the lambda-calculus, whose basic computational step ---beta-reduction--- involves term instantiation. The theory of higher-order process calculi is more complex than that of first-order process calculi. This shows up in, for instance, the definition of behavioral equivalences. A long-standing approach to overcome this burden is to define encodings of higher-order processes into a first-order setting, so as to transfer the theory of the first-order paradigm to the higher-order one. While satisfactory in the case of calculi with basic (higher-order) primitives, this indirect approach falls short in the case of higher-order process calculi featuring constructs for phenomena such as, e.g., localities and dynamic system reconfiguration, which are frequent in modern distributed systems. Indeed, for higher-order process calculi involving little more than traditional process communication, encodings into some first-order language are difficult to handle or do not exist. We then observe that foundational studies for higher-order process calculi must be carried out directly on them and exploit their peculiarities. This dissertation contributes to such foundational studies for higher-order process calculi. We concentrate on two closely interwoven issues in process calculi: expressiveness and decidability. Surprisingly, these issues have been little explored in the higher-order setting. Our research is centered around a core calculus for higher-order concurrency in which only the operators strictly necessary to obtain higher-order communication are retained. We develop the basic theory of this core calculus and rely on it to study the expressive power of issues universally accepted as basic in process calculi, namely synchrony, forwarding, and polyadic communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. One of the phenomena observed in human aging is the progressive increase of a systemic inflammatory state, a condition referred to as “inflammaging”, negatively correlated with longevity. A prominent mediator of inflammation is the transcription factor NF-kB, that acts as key transcriptional regulator of many genes coding for pro-inflammatory cytokines. Many different signaling pathways activated by very diverse stimuli converge on NF-kB, resulting in a regulatory network characterized by high complexity. NF-kB signaling has been proposed to be responsible of inflammaging. Scope of this analysis is to provide a wider, systemic picture of such intricate signaling and interaction network: the NF-kB pathway interactome. Methods. The study has been carried out following a workflow for gathering information from literature as well as from several pathway and protein interactions databases, and for integrating and analyzing existing data and the relative reconstructed representations by using the available computational tools. Strong manual intervention has been necessarily used to integrate data from multiple sources into mathematically analyzable networks. The reconstruction of the NF-kB interactome pursued with this approach provides a starting point for a general view of the architecture and for a deeper analysis and understanding of this complex regulatory system. Results. A “core” and a “wider” NF-kB pathway interactome, consisting of 140 and 3146 proteins respectively, were reconstructed and analyzed through a mathematical, graph-theoretical approach. Among other interesting features, the topological characterization of the interactomes shows that a relevant number of interacting proteins are in turn products of genes that are controlled and regulated in their expression exactly by NF-kB transcription factors. These “feedback loops”, not always well-known, deserve deeper investigation since they may have a role in tuning the response and the output consequent to NF-kB pathway initiation, in regulating the intensity of the response, or its homeostasis and balance in order to make the functioning of such critical system more robust and reliable. This integrated view allows to shed light on the functional structure and on some of the crucial nodes of thet NF-kB transcription factors interactome. Conclusion. Framing structure and dynamics of the NF-kB interactome into a wider, systemic picture would be a significant step toward a better understanding of how NF-kB globally regulates diverse gene programs and phenotypes. This study represents a step towards a more complete and integrated view of the NF-kB signaling system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present PhD thesis summarizes the three-years study about the neutronic investigation of a new concept nuclear reactor aiming at the optimization and the sustainable management of nuclear fuel in a possible European scenario. A new generation nuclear reactor for the nuclear reinassance is indeed desired by the actual industrialized world, both for the solution of the energetic question arising from the continuously growing energy demand together with the corresponding reduction of oil availability, and the environment question for a sustainable energy source free from Long Lived Radioisotopes and therefore geological repositories. Among the Generation IV candidate typologies, the Lead Fast Reactor concept has been pursued, being the one top rated in sustainability. The European Lead-cooled SYstem (ELSY) has been at first investigated. The neutronic analysis of the ELSY core has been performed via deterministic analysis by means of the ERANOS code, in order to retrieve a stable configuration for the overall design of the reactor. Further analyses have been carried out by means of the Monte Carlo general purpose transport code MCNP, in order to check the former one and to define an exact model of the system. An innovative system of absorbers has been conceptualized and designed for both the reactivity compensation and regulation of the core due to cycle swing, as well as for safety in order to guarantee the cold shutdown of the system in case of accident. Aiming at the sustainability of nuclear energy, the steady-state nuclear equilibrium has been investigated and generalized into the definition of the ``extended'' equilibrium state. According to this, the Adiabatic Reactor Theory has been developed, together with a New Paradigm for Nuclear Power: in order to design a reactor that does not exchange with the environment anything valuable (thus the term ``adiabatic''), in the sense of both Plutonium and Minor Actinides, it is required indeed to revert the logical design scheme of nuclear cores, starting from the definition of the equilibrium composition of the fuel and submitting to the latter the whole core design. The New Paradigm has been applied then to the core design of an Adiabatic Lead Fast Reactor complying with the ELSY overall system layout. A complete core characterization has been done in order to asses criticality and power flattening; a preliminary evaluation of the main safety parameters has been also done to verify the viability of the system. Burn up calculations have been then performed in order to investigate the operating cycle for the Adiabatic Lead Fast Reactor; the fuel performances have been therefore extracted and inserted in a more general analysis for an European scenario. The present nuclear reactors fleet has been modeled and its evolution simulated by means of the COSI code in order to investigate the materials fluxes to be managed in the European region. Different plausible scenarios have been identified to forecast the evolution of the European nuclear energy production, including the one involving the introduction of Adiabatic Lead Fast Reactors, and compared to better analyze the advantages introduced by the adoption of new concept reactors. At last, since both ELSY and the ALFR represent new concept systems based upon innovative solutions, the neutronic design of a demonstrator reactor has been carried out: such a system is intended to prove the viability of technology to be implemented in the First-of-a-Kind industrial power plant, with the aim at attesting the general strategy to use, to the largest extent. It was chosen then to base the DEMO design upon a compromise between demonstration of developed technology and testing of emerging technology in order to significantly subserve the purpose of reducing uncertainties about construction and licensing, both validating ELSY/ALFR main features and performances, and to qualify numerical codes and tools.