32 resultados para Cyber physical systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embedded systems are increasingly integral to daily life, improving and facilitating the efficiency of modern Cyber-Physical Systems which provide access to sensor data, and actuators. As modern architectures become increasingly complex and heterogeneous, their optimization becomes a challenging task. Additionally, ensuring platform security is important to avoid harm to individuals and assets. This study primarily addresses challenges in contemporary Embedded Systems, focusing on platform optimization and security enforcement. The initial section of this study delves into the application of machine learning methods to efficiently determine the optimal number of cores for a parallel RISC-V cluster to minimize energy consumption using static source code analysis. Results demonstrate that automated platform configuration is not only viable but also that there is a moderate performance trade-off when relying solely on static features. The second part focuses on addressing the problem of heterogeneous device mapping, which involves assigning tasks to the most suitable computational device in a heterogeneous platform for optimal runtime. The contribution of this section lies in the introduction of novel pre-processing techniques, along with a training framework called Siamese Networks, that enhances the classification performance of DeepLLVM, an advanced approach for task mapping. Importantly, these proposed approaches are independent from the specific deep-learning model used. Finally, this research work focuses on addressing issues concerning the binary exploitation of software running in modern Embedded Systems. It proposes an architecture to implement Control-Flow Integrity in embedded platforms with a Root-of-Trust, aiming to enhance security guarantees with limited hardware modifications. The approach involves enhancing the architecture of a modern RISC-V platform for autonomous vehicles by implementing a side-channel communication mechanism that relays control-flow changes executed by the process running on the host core to the Root-of-Trust. This approach has limited impact on performance and it is effective in enhancing the security of embedded platforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several decision and control tasks involve networks of cyber-physical systems that need to be coordinated and controlled according to a fully-distributed paradigm involving only local communications without any central unit. This thesis focuses on distributed optimization and games over networks from a system theoretical perspective. In the addressed frameworks, we consider agents communicating only with neighbors and running distributed algorithms with optimization-oriented goals. The distinctive feature of this thesis is to interpret these algorithms as dynamical systems and, thus, to resort to powerful system theoretical tools for both their analysis and design. We first address the so-called consensus optimization setup. In this context, we provide an original system theoretical analysis of the well-known Gradient Tracking algorithm in the general case of nonconvex objective functions. Then, inspired by this method, we provide and study a series of extensions to improve the performance and to deal with more challenging settings like, e.g., the derivative-free framework or the online one. Subsequently, we tackle the recently emerged framework named distributed aggregative optimization. For this setup, we develop and analyze novel schemes to handle (i) online instances of the problem, (ii) ``personalized'' optimization frameworks, and (iii) feedback optimization settings. Finally, we adopt a system theoretical approach to address aggregative games over networks both in the presence or absence of linear coupling constraints among the decision variables of the players. In this context, we design and inspect novel fully-distributed algorithms, based on tracking mechanisms, that outperform state-of-the-art methods in finding the Nash equilibrium of the game.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet of Things systems are pervasive systems evolved from cyber-physical to large-scale systems. Due to the number of technologies involved, software development involves several integration challenges. Among them, the ones preventing proper integration are those related to the system heterogeneity, and thus addressing interoperability issues. From a software engineering perspective, developers mostly experience the lack of interoperability in the two phases of software development: programming and deployment. On the one hand, modern software tends to be distributed in several components, each adopting its most-appropriate technology stack, pushing programmers to code in a protocol- and data-agnostic way. On the other hand, each software component should run in the most appropriate execution environment and, as a result, system architects strive to automate the deployment in distributed infrastructures. This dissertation aims to improve the development process by introducing proper tools to handle certain aspects of the system heterogeneity. Our effort focuses on three of these aspects and, for each one of those, we propose a tool addressing the underlying challenge. The first tool aims to handle heterogeneity at the transport and application protocol level, the second to manage different data formats, while the third to obtain optimal deployment. To realize the tools, we adopted a linguistic approach, i.e.\ we provided specific linguistic abstractions that help developers to increase the expressive power of the programming language they use, writing better solutions in more straightforward ways. To validate the approach, we implemented use cases to show that the tools can be used in practice and that they help to achieve the expected level of interoperability. In conclusion, to move a step towards the realization of an integrated Internet of Things ecosystem, we target programmers and architects and propose them to use the presented tools to ease the software development process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory. In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central aim of this dissertation is to introduce innovative methods, models, and tools to enhance the overall performance of supply chains responsible for handling perishable products. This concept of improved performance encompasses several critical dimensions, including enhanced efficiency in supply chain operations, product quality, safety, sustainability, waste generation minimization, and compliance with norms and regulations. The research is structured around three specific research questions that provide a solid foundation for delving into and narrowing down the array of potential solutions. These questions primarily concern enhancing the overall performance of distribution networks for perishable products and optimizing the package hierarchy, extending to unconventional packaging solutions. To address these research questions effectively, a well-defined research framework guides the approach. However, the dissertation adheres to an overarching methodological approach that comprises three fundamental aspects. The first aspect centers on the necessity of systematic data sampling and categorization, including identifying critical points within food supply chains. The data collected in this context must then be organized within a customized data structure designed to feed both cyber-physical and digital twins to quantify and analyze supply chain failures with a preventive perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustained demand for faster,more powerful chips has beenmet by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SOC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MPSOC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NOCS) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the on-chip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation focuses on all of the above points, by describing a NoC architectural implementation called ×pipes; a NoC simulation environment within a cycle-accurate MPSoC emulator called MPARM; a NoC design flow consisting of a front-end tool for optimal NoC instantiation, called SunFloor, and a set of back-end facilities for the study of NoC physical implementations. This dissertation proves the viability of NoCs for current and upcoming designs, by outlining their advantages (alongwith a fewtradeoffs) and by providing a full NoC implementation framework. It also presents some examples of additional extensions of NoCs, allowing e.g. for increased fault tolerance, and outlines where NoCsmay find further application scenarios, such as in stacked chips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchronization is a key issue in any communication system, but it becomes fundamental in the navigation systems, which are entirely based on the estimation of the time delay of the signals coming from the satellites. Thus, even if synchronization has been a well known topic for many years, the introduction of new modulations and new physical layer techniques in the modern standards makes the traditional synchronization strategies completely ineffective. For this reason, the design of advanced and innovative techniques for synchronization in modern communication systems, like DVB-SH, DVB-T2, DVB-RCS, WiMAX, LTE, and in the modern navigation system, like Galileo, has been the topic of the activity. Recent years have seen the consolidation of two different trends: the introduction of Orthogonal Frequency Division Multiplexing (OFDM) in the communication systems, and of the Binary Offset Carrier (BOC) modulation in the modern Global Navigation Satellite Systems (GNSS). Thus, a particular attention has been given to the investigation of the synchronization algorithms in these areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stabilization of nanoparticles against their irreversible particle aggregation and oxidation reactions. is a requirement for further advancement in nanoparticle science and technology. For this reason the research aim on this topic focuses on the synthesis of various metal nanoparticles protected with monolayers containing different reactive head groups and functional tail groups. In this work cuprous bromide nanocrystals haave been synthetized with a diameter of about 20 nanometers according to a new sybthetic method adding dropwise ascorbic acid to a water solution of lithium bromide and cupric chloride under continuous stirring and nitrogen flux. Butane thiolate Cu protected nanoparticles have been synthetized according to three different syntesys methods. Their morphologies appear related to the physicochemical conditions during the synthesis and to the dispersing medium used to prepare the sample. Synthesis method II allows to obtain stable nanoparticles of 1-2 nm in size both isolated and forming clusters. Nanoparticle cluster formation was enhanced as water was used as dispersing medium probably due to the idrophobic nature of the butanethiolate layers coating the nanoparticle surface. Synthesis methods I and III lead to large unstable spherical nanoparticles with size ranging between 20 to 50 nm. These nanoparticles appeared in the TEM micrograph with the same morphology independently on the dispersing medium used in the sample preparation. The stability and dimensions of the copper nanoparticles appear inversely related. Using the same methods above described for the butanethiolate protected copper nanoparticles 4-methylbenzenethiol protected copper nanoparticles have been prepared. Diffractometric and spectroscopic data reveal that decomposition processes didn’t occur in both the 4-methylbenzenethiol copper protected nanoparticles precipitates from formic acid and from water in a period of time six month long. Se anticarcinogenic effects by multiple mechanisms have been extensively investigated and documented and Se is defined a genuine nutritional cancer-protecting element and a significant protective effect of Se against major forms of cancer. Furthermore phloroglucinol was found to possess cytoprotective effects against oxidative stress, thanks to reactive oxygen species (ROS) which are associated with cells and tissue damages and are the contributing factors for inflammation, aging, cancer, arteriosclerosis, hypertension and diabetes. The goal of our work has been to set up a new method to synthesize in mild conditions amorphous Se nanopaticles surface capped with phloroglucinol, which is used during synthesis as reducing agent to obtain stable Se nanoparticles in ethanol, performing the synergies offered by the specific anticarcinogenic properties of Se and the antioxiding ones of phloroalucinol. We have synthesized selenium nanoparticles protected by phenolic molecules chemically bonded to their surface. The phenol molecules coating the nanoparticles surfaces form low ordered arrays as can be seen from the wider shape of the absorptions in the FT-IR spectrum with respect to those appearing in that of crystalline phenol. On the other hand, metallic nanoparticles with unique optical properties, facile surface chemistry and appropriate size scale are generating much enthusiasm in nanomedicine. In fact Au nanoparticles has immense potential for both cancer diagnosis and therapy. Especially Au nanoparticles efficiently convert the strongly adsorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. According to the about, metal nanoparticles-HA nanocrystals composites should have tremendous potential in novel methods for therapy of cancer. 11 mercaptoundecanoic surface protected Au4Ag1 nanoparticles adsorbed on nanometric apathyte crystals we have successfully prepared like an anticancer nanoparticles deliver system utilizing biomimetic hydroxyapatyte nanocrystals as deliver agents. Furthermore natural chrysotile, formed by densely packed bundles of multiwalled hollow nanotubes, is a mineral very suitable for nanowires preparation when their inner nanometer-sized cavity is filled with a proper material. Bundles of chrysotile nanotubes can then behave as host systems, where their large interchannel separation is actually expected to prevent the interaction between individual guest metallic nanoparticles and act as a confining barrier. Chrysotile nanotubes have been filled with molten metals such as Hg, Pb, Sn, semimetals, Bi, Te, Se, and with semiconductor materials such as InSb, CdSe, GaAs, and InP using both high-pressure techniques and metal-organic chemical vapor deposition. Under hydrothermal conditions chrysotile nanocrystals have been synthesized as a single phase and can be utilized as a very suitable for nanowires preparation filling their inner nanometer-sized cavity with metallic nanoparticles. In this research work we have synthesized and characterized Stoichiometric synthetic chrysotile nanotubes have been partially filled with bi and monometallic highly monodispersed nanoparticles with diameters ranging from 1,7 to 5,5 nm depending on the core composition (Au, Au4Ag1, Au1Ag4, Ag). In the case of 4 methylbenzenethiol protected silver nanoparticles, the filling was carried out by convection and capillarity effect at room temperature and pressure using a suitable organic solvent. We have obtained new interesting nanowires constituted of metallic nanoparticles filled in inorganic nanotubes with a inner cavity of 7 nm and an isolating wall with a thick ranging from 7 to 21 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deal with the design of advanced OFDM systems. Both waveform and receiver design have been treated. The main scope of the Thesis is to study, create, and propose, ideas and novel design solutions able to cope with the weaknesses and crucial aspects of modern OFDM systems. Starting from the the transmitter side, the problem represented by low resilience to non-linear distortion has been assessed. A novel technique that considerably reduces the Peak-to-Average Power Ratio (PAPR) yielding a quasi constant signal envelope in the time domain (PAPR close to 1 dB) has been proposed.The proposed technique, named Rotation Invariant Subcarrier Mapping (RISM),is a novel scheme for subcarriers data mapping,where the symbols belonging to the modulation alphabet are not anchored, but maintain some degrees of freedom. In other words, a bit tuple is not mapped on a single point, rather it is mapped onto a geometrical locus, which is totally or partially rotation invariant. The final positions of the transmitted complex symbols are chosen by an iterative optimization process in order to minimize the PAPR of the resulting OFDM symbol. Numerical results confirm that RISM makes OFDM usable even in severe non-linear channels. Another well known problem which has been tackled is the vulnerability to synchronization errors. Indeed in OFDM system an accurate recovery of carrier frequency and symbol timing is crucial for the proper demodulation of the received packets. In general, timing and frequency synchronization is performed in two separate phases called PRE-FFT and POST-FFT synchronization. Regarding the PRE-FFT phase, a novel joint symbol timing and carrier frequency synchronization algorithm has been presented. The proposed algorithm is characterized by a very low hardware complexity, and, at the same time, it guarantees very good performance in in both AWGN and multipath channels. Regarding the POST-FFT phase, a novel approach for both pilot structure and receiver design has been presented. In particular, a novel pilot pattern has been introduced in order to minimize the occurrence of overlaps between two pattern shifted replicas. This allows to replace conventional pilots with nulls in the frequency domain, introducing the so called Silent Pilots. As a result, the optimal receiver turns out to be very robust against severe Rayleigh fading multipath and characterized by low complexity. Performance of this approach has been analytically and numerically evaluated. Comparing the proposed approach with state of the art alternatives, in both AWGN and multipath fading channels, considerable performance improvements have been obtained. The crucial problem of channel estimation has been thoroughly investigated, with particular emphasis on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSSs). In this contest our contribution is twofold, from the theoretical side, we derived lower bounds on the estimation mean-square error (MSE) performance for any MSS selection strategy,from the receiver design we proposed novel MSS selection strategies which have been shown to approach these MSE lower bounds, and outperformed the state-of-the-art alternatives. Finally, the possibility of using of Single Carrier Frequency Division Multiple Access (SC-FDMA) in the Broadband Satellite Return Channel has been assessed. Notably, SC-FDMA is able to improve the physical layer spectral efficiency with respect to single carrier systems, which have been used so far in the Return Channel Satellite (RCS) standards. However, it requires a strict synchronization and it is also sensitive to phase noise of local radio frequency oscillators. For this reason, an effective pilot tone arrangement within the SC-FDMA frame, and a novel Joint Multi-User (JMU) estimation method for the SC-FDMA, has been proposed. As shown by numerical results, the proposed scheme manages to satisfy strict synchronization requirements and to guarantee a proper demodulation of the received signal.