4 resultados para volumetric bone mineral density

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] There is a substantial body of evidence indicating that exercise prior to the pubertal growth spurt stimulates bone growth and skeletal muscle hypertrophy to a greater degree than observed during growth in non-physically active children. Bone mass can be increased by some exercise programmes in adults and the elderly, and attenuate the losses in bone mass associated with aging. This review provides an overview of cross-sectional and longitudinal studies performed to date involving training and bone measurements. Cross-sectional studies show in general that exercise modalities requiring high forces and/or generating high impacts have the greatest osteogenic potential. Several training methods have been used to improve bone mineral density (BMD) and content in prospective studies. Not all exercise modalities have shown positive effects on bone mass. For example, unloaded exercise such as swimming has no impact on bone mass, while walking or running has limited positive effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] BACKGROUND: To determine whether androgen receptor (AR) CAG (polyglutamine) and GGN (polyglycine) polymorphisms influence bone mineral density (BMD), osteocalcin and free serum testosterone concentration in young men. METHODOLOGY/PRINCIPAL FINDINGS: Whole body, lumbar spine and femoral bone mineral content (BMC) and BMD, Dual X-ray Absorptiometry (DXA), AR repeat polymorphisms (PCR), osteocalcin and free testosterone (ELISA) were determined in 282 healthy men (28.6+/-7.6 years). Individuals were grouped as CAG short (CAG(S)) if harboring repeat lengths of < or = 21 or CAG long (CAG(L)) if CAG > 21, and GGN was considered short (GGN(S)) or long (GGN(L)) if GGN < or = 23 or > 23. There was an inverse association between logarithm of CAG and GGN length and Ward's Triangle BMC (r = -0.15 and -0.15, P<0.05, age and height adjusted). No associations between CAG or GGN repeat length and regional BMC or BMD were observed after adjusting for age. Whole body and regional BMC and BMD values were similar in men harboring CAG(S), CAG(L), GGN(S) or GGN(L) AR repeat polymorphisms. Men harboring the combination CAG(L)+GGN(L) had 6.3 and 4.4% higher lumbar spine BMC and BMD than men with the haplotype CAG(S)+GGN(S) (both P<0.05). Femoral neck BMD was 4.8% higher in the CAG(S)+GGN(S) compared with the CAG(L)+GGN(S) men (P<0.05). CAG(S), CAG(L), GGN(S), GGN(L) men had similar osteocalcin concentration as well as the four CAG-GGN haplotypes studied. CONCLUSION: AR polymorphisms have an influence on BMC and BMD in healthy adult humans, which cannot be explained through effects in osteoblastic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] OBJECTIVES: To investigate to what extent bone mass accrual is determined by physical activity and changes in lean, fat, and total body mass during growth. METHODS: Twenty six physically active and 16 age matched control boys were followed up for three years. All subjects were prepubertal at the start of the survey (mean (SEM) age 9.4 (0.3) years). The weekly physical activity of the active boys included compulsory physical education sessions (80-90 minutes a week), three hours a week of extracurricular sports participation, and occasional sports competitions at weekends. The physical activity of the control group was limited to the compulsory physical education curriculum. Bone mineral content (BMC) and areal density (BMD), lean mass, and fat mass were measured by dual energy x ray absorptiometry. RESULTS: The effect of sports participation on femoral bone mass accrual was remarkable. Femoral BMC and BMD increased twice as much in the active group as in the controls over the three year period (p < 0.05). The greatest correlation was found between the increment in femoral bone mass and the increment in lean mass (BMC r = 0.67 and BMD r = 0.69, both p < 0.001). Multiple regression analysis revealed enhancement in lean mass as the best predictor of the increment in femoral bone BMC (R = 0.65) and BMD (R = 0.69). CONCLUSIONS: Long term sports participation during early adolescence results in greater accrual of bone mass. Enhancement of lean mass seems to be the best predictor of this bone mass accumulation. However, for a given muscle mass, a greater level of physical activity is associated with greater bone mass and density in peripubertal boys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Leptin and osteocalcin play a role in the regulation of the fat-bone axis and may be altered by exercise. To determine whether osteocalcin reduces fat mass in humans fed ad libitum and if there is a sex dimorphism in the serum osteocalcin and leptin responses to strength training, we studied 43 male (age 23.9 2.4 yr, mean +/- SD) and 23 female physical education students (age 23.2 +/- 2.7 yr). Subjects were randomly assigned to two groups: training (TG) and control (CG). TG followed a strength combined with plyometric jumps training program during 9 wk, whereas the CG did not train. Physical fitness, body composition (dual-energy X-ray absorptiometry), and serum concentrations of hormones were determined pre- and posttraining. In the whole group of subjects (pretraining), the serum concentration of osteocalcin was positively correlated (r = 0.29-0.42, P < 0.05) with whole body and regional bone mineral content, lean mass, dynamic strength, and serum-free testosterone concentration (r = 0.32). However, osteocalcin was negatively correlated with leptin concentration (r = -0.37), fat mass (r = -0.31), and the percent body fat (r = -0.44). Both sexes experienced similar relative improvements in performance, lean mass (+4-5%), and whole body (+0.78%) and lumbar spine bone mineral content (+1.2-2%) with training. Serum osteocalcin concentration was increased after training by 45 and 27% in men and women, respectively (P < 0.05). Fat mass was not altered by training. Vastus lateralis type II MHC composition at the start of the training program predicted 25% of the osteocalcin increase after training. Serum leptin concentration was reduced with training in women. In summary, while the relative effects of strength training plus plyometric jumps in performance, muscle hypertrophy, and osteogenesis are similar in men and women, serum leptin concentration is reduced only in women. The osteocalcin response to strength training is, in part, modulated by the muscle phenotype (MHC isoform composition). Despite the increase in osteocalcin, fat mass was not reduced.