4 resultados para vibration-based damage detection (VBDD)

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]This paper describes some simple but useful computer vision techniques for human-robot interaction. First, an omnidirectional camera setting is described that can detect people in the surroundings of the robot, giving their angular positions and a rough estimate of the distance. The device can be easily built with inexpensive components. Second, we comment on a color-based face detection technique that can alleviate skin-color false positives. Third, a simple head nod and shake detector is described, suitable for detecting affirmative/negative, approval/dissaproval, understanding/disbelief head gestures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]The human face provides useful information during interaction; therefore, any system integrating Vision- BasedHuman Computer Interaction requires fast and reliable face and facial feature detection. Different approaches have focused on this ability but only open source implementations have been extensively used by researchers. A good example is the Viola–Jones object detection framework that particularly in the context of facial processing has been frequently used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]Vision-based applications designed for humanmachine interaction require fast and accurate hand detection. However, previous works on this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects to locate. This paper presents an approach which changes the detection target without limiting the number of detected gestures. Using a cascade classifier we detect hands based on their wrists. With this approach, we introduce two main contributions: (1) a reliable segmentation, independently of the gesture being made and (2) a training phase faster than previous cascade classifier based methods. The paper includes experimental evaluations with different video streams that illustrate the efficiency and suitability for perceptual interfaces.