3 resultados para shoot
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] The shoot density, leaf length and biomass of the seagrass Cymodocea nodosa (Ucria) Ascherson were found to severely decline in the last 17 years in the oceanic island of Gran Canaria (central Eastern Atlantic). Five seagrass meadows were sampled in summer and winter of 1994-1995 and in winter and summer 2011. The decrease in C. nodosa correlated with a 3-fold increase in the biomass of the green rhizophytic algae Caulerpa prolifera (Forsskål) J.V. Lamoroux over the same time period, although this increase varied notably among meadows. We also documented a negative correlation between the biomass of C. nodosa and C. prolifera at the island-scale, sampling 16 meadows in 2011. Experimental evidence demonstrated that C. prolifera can cause significant negative impacts on C. nodosa: plots with total (100%) removals of C. prolifera had ca. 2.5 more shoots and 3.5 times more biomass of C. nodosa, after 8 months, compared to plots with 50% removals and untouched control plots. Interference by C. prolifera appears to partially explain the decay in the abundance of C. nodosa populations in Gran Canaria. This study, however, did not identify potential underlying processes and/or environmental alterations that may have facilitated the disappearance of C. nodosa.
Resumo:
[EN] Seagrass meadows are deteriorating worldwide. However, numerous declines are still unreported, which avoid accurate evaluations of seagrass global trends. This is particularly relevant for the western African coast and nearby oceanic archipelagos in the eastern Atlantic. The seagrass Cymodocea nodosa is an ecological engineer on shallow soft bottoms of the Canary Islands. A comparative decadal study was conducted in 21 C. nodosa seagrass meadows at Gran Canaria Island to compare the structure (shoot density, leaf length and cover) between 2003 and 2012. Overall, 11 meadows exhibited a severe regression, while 10 remained relatively stable. During this period, natural influences (sea surface temperature, Chlorophyll-a concentration and PAR light, as well as the number of storm episodes detaching seagrasses) had a low predictive power on temporal patterns in seagrass structure. In contrast, proximity from a range of human-mediated influences (e.g. the number of outfalls and ports) seem to be related to the loss of seagrass; the rate of seagrass erosion between 2003 and 2012 was significantly predicted by the number of human-mediated impacts around each meadow. This result highlights promoting management actions to conserve meadows of C. nodosa at the study region through efficient management of local impacts
Resumo:
Máster Oficial en Gestión Costera