3 resultados para pharmaceuticals in wastewater

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] An assessment of the concentrations of thirteen different therapeutic pharmaceutical compounds was conducted on water samples obtained from different wastewater treatment plants (WWTPs) using solid phase extraction and high- and ultra-high-performance liquid chromatography with mass spectrometry detection (HPLC-MS/MS and UHPLC-MS/MS), was carried out. The target compounds included ketoprofen and naproxen (anti-inflammatories), bezafibrate (lipid-regulating), carbamazepine (anticonvulsant), metamizole (analgesic), atenolol (?-blocker), paraxanthine (stimulant), fluoxetine (antidepressant), and levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin and sarafloxacin (fluoroquinolone antibiotics). The relative standard deviations obtained in method were below 11%, while the detection and quantification limits were in the range of 0.3 ? 97.4 ng·L-1 and 1.1 ? 324.7 ng·L-1, respectively. The water samples were collected from two different WWTPs located on the island of Gran Canaria in Spain over a period of one year. The first WWTP (denoted as WWTP1) used conventional activated sludge for the treatment of wastewater, while the other plant (WWTP2) employed a membrane bioreactor system for wastewater treatment. Most of the pharmaceutical compounds detected in this study during the sampling periods were found to have concentrations ranging between 0.02 and 34.81 ?g·L-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[ES]En este trabajo se ha realizado la evaluación de la concentración de compuestos farmacéuticos de uso común de diferentes grupos terapéuticos tales como, antibióticos, antiinflamatorios, analgésicos, reguladores lipídicos, betabloqueantes, antidepresivos, estimulantes y antiepilépticos, en aguas procedentes de Estaciones de Depuración de Aguas Residuales de la isla de Gran Canaria, con el fin de poner en conocimiento la situación del problema, siendo ésta un paso previo para su posible regulación y remediación. Debido a las bajas concentraciones en que estos compuestos se encuentran en las aguas residuales, para llevar a cabo el estudio, se utilizaron procesos analíticos basados en un retratamiento de la muestra utilizando la extracción en fase sólida y su posterior determinación por técnicas instrumentales de altas prestaciones

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Until recently, sample preparation was carried out using traditional techniques, such as liquid–liquid extraction (LLE), that use large volumes of organic solvents. Solid-phase extraction (SPE) uses much less solvent than LLE, although the volume can still be significant. These preparation methods are expensive, time-consuming and environmentally unfriendly. Recently, a great effort has been made to develop new analytical methodologies able to perform direct analyses using miniaturised equipment, thereby achieving high enrichment factors, minimising solvent consumption and reducing waste. These microextraction techniques improve the performance during sample preparation, particularly in complex water environmental samples, such as wastewaters, surface and ground waters, tap waters, sea and river waters. Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) and time-of-flight mass spectrometric (TOF/MS) techniques can be used when analysing a broad range of organic micropollutants. Before separating and detecting these compounds in environmental samples, the target analytes must be extracted and pre-concentrated to make them detectable. In this work, we review the most recent applications of microextraction preparation techniques in different water environmental matrices to determine organic micropollutants: solid-phase microextraction SPME, in-tube solid-phase microextraction (IT-SPME), stir bar sorptive extraction (SBSE) and liquid-phase microextraction (LPME). Several groups of compounds are considered organic micropollutants because these are being released continuously into the environment. Many of these compounds are considered emerging contaminants. These analytes are generally compounds that are not covered by the existing regulations and are now detected more frequently in different environmental compartments. Pharmaceuticals, surfactants, personal care products and other chemicals are considered micropollutants. These compounds must be monitored because, although they are detected in low concentrations, they might be harmful toward ecosystems.