2 resultados para partial geometry
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] In this work, we present a new model for a dense disparity estimation and the 3-D geometry reconstruction using a color image stereo pair. First, we present a brief introduction to the 3-D Geometry of a camera system. Next, we propose a new model for the disparity estimation based on an energy functional. We look for the local minima of the energy using the associate Euler-Langrage partial differential equations. This model is a generalization to color image of the model developed in, with some changes in the strategy to avoid the irrelevant local minima. We present some numerical experiences of 3-D reconstruction, using this method some real stereo pairs.
Resumo:
[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.