10 resultados para high-flow

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The tight relation between arterial oxygen content and maximum oxygen uptake (Vv(o2max)within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O(2) extraction capacity with chronic hypoxia, and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia. The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min(-1) mmHg(-1)) 55.2+/-3.7 (SL), 48.0+/-1.7 (W2), 37.8+/-0.4 (W8) and 27.7+/-1.5 (Nat). However, when correcting oxygen conductance for the observed reduction in maximal leg blood flow with acclimatization the effect diminished. When calculating a hypothetical leg V(o2max)at altitude using either the leg blood flow or the O(2) conductance values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant V(o2max)for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O(2) conductance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] BACKGROUND: In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied. METHODS AND RESULTS: HR, Q, oxygen uptake, mean arterial pressure, and leg blood flow were determined at rest and during cycle exercise with and without vagal blockade with glycopyrrolate in 7 healthy lowlanders after 9 weeks' residence at >/=5260 m (ALT). At ALT, glycopyrrolate increased resting HR by 80 bpm (73+/-4 to 153+/-4 bpm) compared with 53 bpm (61+/-3 to 114+/-6 bpm) at sea level (SL). During exercise at ALT, glycopyrrolate increased HR by approximately 40 bpm both at submaximal (127+/-4 to 170+/-3 bpm; 118 W) and maximal (141+/-6 to 180+/-2 bpm) exercise, whereas at SL, the increase was only by 16 bpm (137+/-6 to 153+/-4 bpm) at 118 W, with no effect at maximal exercise (181+/-2 bpm). Despite restoration of maximal HR to SL values, glycopyrrolate had no influence on Q, which was reduced at ALT. Breathing FIO(2)=0.55 at peak exercise restored Q and power output to SL values. CONCLUSIONS: Enhanced parasympathetic neural activity accounts for the lowering of HR during exercise at ALT without influencing Q. The abrupt restoration of peak exercise Q in chronic hypoxia to maximal SL values when arterial PO(2) and SO(2) are similarly increased suggests hypoxia-mediated attenuation of Q.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] 1. The present study examined whether reductions in muscle blood flow with exercise-induced dehydration would reduce substrate delivery and metabolite and heat removal to and from active skeletal muscles during prolonged exercise in the heat. A second aim was to examine the effects of dehydration on fuel utilisation across the exercising leg and identify factors related to fatigue. 2. Seven cyclists performed two cycle ergometer exercise trials in the heat (35 C; 61 +/- 2 % of maximal oxygen consumption rate, VO2,max), separated by 1 week. During the first trial (dehydration, DE), they cycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive DE and hyperthermia (3.9 +/- 0.3 % body weight loss and 39.7 +/- 0.2 C oesophageal temperature, Toes). On the second trial (control), they cycled for the same period of time maintaining euhydration by ingesting fluids and stabilising Toes at 38.2 +/- 0.1 degrees C. 3. After 20 min of exercise in both trials, leg blood flow (LBF) and leg exchange of lactate, glucose, free fatty acids (FFA) and glycerol were similar. During the 20 to 135 +/- 4 min period of exercise, LBF declined significantly in DE but tended to increase in control. Therefore, after 120 and 135 +/- 4 min of DE, LBF was 0.6 +/- 0.2 and 1.0 +/- 0.3 l min-1 lower (P < 0.05), respectively, compared with control. 4. The lower LBF after 2 h in DE did not alter glucose or FFA delivery compared with control. However, DE resulted in lower (P < 0.05) net FFA uptake and higher (P < 0.05) muscle glycogen utilisation (45 %), muscle lactate accumulation (4.6-fold) and net lactate release (52 %), without altering net glycerol release or net glucose uptake. 5. In both trials, the mean convective heat transfer from the exercising legs to the body core ranged from 6.3 +/- 1.7 to 7.2 +/- 1.3 kJ min-1, thereby accounting for 35-40 % of the estimated rate of heat production ( approximately 18 kJ min-1). 6. At exhaustion in DE, blood lactate values were low whereas blood glucose and muscle glycogen levels were still high. Exhaustion coincided with high body temperature ( approximately 40 C). 7. In conclusion, the present results demonstrate that reductions in exercising muscle blood flow with dehydration do not impair either the delivery of glucose and FFA or the removal of lactate during moderately intense prolonged exercise in the heat. However, dehydration during exercise in the heat elevates carbohydrate oxidation and lactate production. A major finding is that more than one-half of the metabolic heat liberated in the contracting leg muscles is dissipated directly to the surrounding environment. The present results indicate that hyperthermia, rather than altered metabolism, is the main factor underlying the early fatigue with dehydration during prolonged exercise in the heat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The accuracy and performance of current variational optical ow methods have considerably increased during the last years. The complexity of these techniques is high and enough care has to be taken for the implementation. The aim of this work is to present a comprehensible implementation of recent variational optical flow methods. We start with an energy model that relies on brightness and gradient constancy terms and a ow-based smoothness term. We minimize this energy model and derive an e cient implicit numerical scheme. In the experimental results, we evaluate the accuracy and performance of this implementation with the Middlebury benchmark database. We show that it is a competitive solution with respect to current methods in the literature. In order to increase the performance, we use a simple strategy to parallelize the execution on multi-core processors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Background: Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. Methods: Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results: Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. Conclusions: A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] We propose four algorithms for computing the inverse optical flow between two images. We assume that the forward optical flow has already been obtained and we need to estimate the flow in the backward direction. The forward and backward flows can be related through a warping formula, which allows us to propose very efficient algorithms. These are presented in increasing order of complexity. The proposed methods provide high accuracy with low memory requirements and low running times.In general, the processing reduces to one or two image passes. Typically, when objects move in a sequence, some regions may appear or disappear. Finding the inverse flows in these situations is difficult and, in some cases, it is not possible to obtain a correct solution. Our algorithms deal with occlusions very easy and reliably. On the other hand, disocclusions have to be overcome as a post-processing step. We propose three approaches for filling disocclusions. In the experimental results, we use standard synthetic sequences to study the performance of the proposed methods, and show that they yield very accurate solutions. We also analyze the performance of the filling strategies. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] We analyze the discontinuity preserving problem in TV-L1 optical flow methods. This type of methods typically creates rounded effects at flow boundaries, which usually do not coincide with object contours. A simple strategy to overcome this problem consists in inhibiting the diffusion at high image gradients. In this work, we first introduce a general framework for TV regularizers in optical flow and relate it with some standard approaches. Our survey takes into account several methods that use decreasing functions for mitigating the diffusion at image contours. Consequently, this kind of strategies may produce instabilities in the estimation of the optical flows. Hence, we study the problem of instabilities and show that it actually arises from an ill-posed formulation. From this study, it is possible to come across with different schemes to solve this problem. One of these consists in separating the pure TV process from the mitigating strategy. This has been used in another work and we demonstrate here that it has a good performance. Furthermore, we propose two alternatives to avoid the instability problems: (i) we study a fully automatic approach that solves the problem based on the information of the whole image; (ii) we derive a semi-automatic approach that takes into account the image gradients in a close neighborhood adapting the parameter in each position. In the experimental results, we present a detailed study and comparison between the different alternatives. These methods provide very good results, especially for sequences with a few dominant gradients. Additionally, a surprising effect of these approaches is that they can cope with occlusions. This can be easily achieved by using strong regularizations and high penalizations at image contours.