2 resultados para genetic group
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Despite the considerable population genetic and connectivity research on the hawksbill sea turtle (Eretmochelys imbricata) and the species being critically endangered, the eastern Atlantic remains understudied. We present the first analysis of mitochondrial DNA (mtDNA) sequences (n = 28) of hawksbill juveniles in a foraging aggregation at the Cape Verde Islands. Our results showed three haplotypes non-reported in any nesting population to date, with one of them accounting for 68% of the samples. These three haplotypes were closely related to each other but highly divergent from all known Caribbean and Western Atlantic haplotypes.
Resumo:
[EN] Background: Culicoides (Diptera: Ceratopogonidae) biting midges are vectors for a diversity of pathogens including bluetongue virus (BTV) that generate important economic losses. BTV has expanded its range in recent decades, probably due to the expansion of its main vector and the presence of other autochthonous competent vectors. Although the Canary Islands are still free of bluetongue disease (BTD), Spain and Europe have had to face up to a spread of bluetongue with disastrous consequences. Therefore, it is essential to identify the distribution of biting midges and understand their feeding patterns in areas susceptible to BTD. To that end, we captured biting midges on two farms in the Canary Islands (i) to identify the midge species in question and characterize their COI barcoding region and (ii) to ascertain the source of their bloodmeals using molecular tools.Methods: Biting midges were captured using CDC traps baited with a 4-W blacklight (UV) bulb on Gran Canaria and on Tenerife. Biting midges were quantified and identified according to their wing patterns. A 688 bp segment of the mitochondrial COI gene of 20 biting midges (11 from Gran Canaria and 9 from Tenerife) were PCR amplified using the primers LCO1490 and HCO2198. Moreover, after selected all available females showing any rest of blood in their abdomen, a nested-PCR approach was used to amplify a fragment of the COI gene from vertebrate DNA contained in bloodmeals. The origin of bloodmeals was identified by comparison with the nucleotide-nucleotide basic alignment search tool (BLAST). Results: The morphological identification of 491 female biting midges revealed the presence of a single morphospecies belonging to the Obsoletus group. When sequencing the barcoding region of the 20 females used to check genetic variability, we identified two haplotypes differing in a single base. Comparison analysis using the nucleotide-nucleotide basic alignment search tool (BLAST) showed that both haplotypes belong to Culicoides obsoletus, a potential BTV vector. As well, using molecular tools we identified the feeding sources of 136 biting midges and were able to confirm that C. obsoletus females feed on goats and sheep on both islands.Conclusions: These results confirm that the feeding pattern of C. obsoletus is a potentially important factor in BTV transmission to susceptible hosts in case of introduction into the archipelago. Consequently, in the Canary Islands it is essential to maintain vigilance of Culicoides-transmitted viruses such as BTV and the novel Schmallenberg virus.