4 resultados para flying robots
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[ES]El objetivo de este Proyecto Fin de Carrera es diseñar una herramienta software que nos permita controlar de forma inalámbrica un brazo robótico. ésto se ha desarrollado para poder acercar el mundo de la robótica a aquellas personas ajenas a ello, además de dotar de un sistema de control para el día de mañana, evitando problemas de software caduco y antiguo. Para la realización de este proyecto se ha implementado una aplicación Android que permitirá al usuario realizar las acciones de las que dota una paleta estándar de brazo robótico. Además se ha desarrollado una rutina de control de flujo para Arduino, que enlace la tableta con el robot.
Resumo:
[EN] This project briefly analyzes the scope and applications of Industrial Robotics, as well as the importance that this technical discipline has gained in the past decades. In addition, it proposes a modern platform to assist in teaching this discipline in colleges and universities. This new educational platform for the teaching of Industrial Robotics is based on the robotic systems from Rhino Robotics Ltd., using the existing robotic arms and replacing the control electronics by a newer, modern and yet backwards-compatible controller. In addition to the controller, this platform also provides new, up-to-date software utilities that are more intuitive than those provided with the old system. The work to be done consists essentially in receiving commands from a personal computer which the controller must interpret in order to control the motors of the robotic arm. The controller itself will be implemented as an embedded system based on microcontrollers. This requires the implementation of a communication protocol between the personal computer and the microcontroller, the design of a command interpreter, the design of the electronics for motor control using PWM and H-bridges, and the implementation of control techniques (more precisely, PID control). Hence, this project combines software and hardware design and integration techniques with motor control techniques and feedback control methods from Control Engineering, along with the kinematic analysis of the Rhino XR-4 robotic arm.
Resumo:
[EN]One of the main issues of the current education system is the lack of student motivation. This aspect together with the permanent change that the Information and Communications Technologies involve represents a major challenge for the teacher: to continuously update contents and to keep awake the student’s interest. A tremendously useful tool in classrooms consists on the integration of projects with participative and collaborative dynamics, where the teacher acts mainly as a guidance to the student activity instead of being a mere knowledge and evaluation transmitter. As a specific example of project based learning, the EDUROVs project consists on building an economic underwater robot using low cost materials, but allowing the integration and programming of many accessories and sensors with minimum budget using opensource hardware and software.