9 resultados para face to face

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]In this paper, we experimentally study the combination of face and facial feature detectors to improve face detection performance. The face detection problem, as suggeted by recent face detection challenges, is still not solved. Face detectors traditionally fail in large-scale problems and/or when the face is occluded or di erent head rotations are present. The combination of face and facial feature detectors is evaluated with a public database. The obtained results evidence an improvement in the positive detection rate while reducing the false detection rate. Additionally, we prove that the integration of facial feature detectors provides useful information for pose estimation and face alignment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]This work presents a comparison among different focus measures used in the literature for autofocusing in a non previously explored application of face detection. This application has different characteristics to those where traditionally autofocus methods have been applied like microscopy or depth from focus. The aim of the work is to find if the best focus measures in traditional applications of autofocus have the same performance in face detection applications. To do that six focus measures has been studied in four different settings from the oldest to more recent ones.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]In this paper a system for face recognition from a tabula rasa (i.e. blank slate) perspective is described. A priori, the system has the only ability to detect automatically faces and represent them in a space of reduced dimension. Later, the system is exposed to over 400 different identities, observing its recognition performance evolution. The preliminary results achieved indicate on the one side that the system is able to reject most of unknown individuals after an initialization stage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two di erent face representation approaches: Principal Components Analysis (PCA) and Gabor lters. The results achieved using a Support Vector Machine (SVM) based classi er are promising and particularly better for the second representation approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]This paper describes in detail a real-time multiple face detection system for video streams. The system adds to the good performance provided by a window shift approach, the combination of different cues available in video streams due to temporal coherence. The results achieved by this combined solution outperform the basic face detector obtaining a 98% success rate for around 27000 images, providing additionally eye detection and a relation between the successive detections in time by means of detection threads.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]In visual surveillance face detection can be an important cue for initializing tracking algorithms. Recent work in psychophics hints at the importance of the local context of a face for robust detection, such as head contours and torso. This paper describes a detector that actively utilizes the idea of local context. The promise is to gain robustness that goes beyond the capabilities of traditional face detection making it particularly interesting for surveillance. The performance of the proposed detector in terms of accuracy and speed is evaluated on data sets from PETS 2000 and PETS 2003 and compared to the object-centered approach. Particular attention is paid to the role of available image resolution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]Facial image processing is becoming widespread in human-computer applications, despite its complexity. High-level processes such as face recognition or gender determination rely on low-level routines that must e ectively detect and normalize the faces that appear in the input image. In this paper, a face detection and normalization system is described. The approach taken is based on a cascade of fast, weak classi ers that together try to determine whether a frontal face is present in the image.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.