6 resultados para exercise test
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.
Resumo:
[EN] The aim of this study was to determine the influence of activity performed during the recovery period on the aerobic and anaerobic energy yield, as well as on performance, during high-intensity intermittent exercise (HIT). Ten physical education students participated in the study. First they underwent an incremental exercise test to assess their maximal power output (Wmax) and VO2max. On subsequent days they performed three different HITs. Each HIT consisted of four cycling bouts until exhaustion at 110% Wmax. Recovery periods of 5 min were allowed between bouts. HITs differed in the kind of activity performed during the recovery periods: pedaling at 20% VO2max (HITA), stretching exercises, or lying supine. Performance was 3-4% and aerobic energy yield was 6-8% (both p < 0.05) higher during the HITA than during the other two kinds of HIT. The greater contribution of aerobic metabolism to the energy yield during the high-intensity exercise bouts with active recovery was due to faster VO2 kinetics (p< 0.01) and a higher VO2peak during the exercise bouts preceded by active recovery (p < 0.05). In contrast, the anaerobic energy yield (oxygen deficit and peak blood lactate concentrations) was similar in all HITs. Therefore, this study shows that active recovery facilitates performance by increasing aerobic contribution to the whole energy yield turnover during high-intensity intermittent exercise.
Resumo:
[EN] During maximal whole body exercise VO2 peak is limited by O2 delivery. In turn, it is though that blood flow at near-maximal exercise must be restrained by the sympathetic nervous system to maintain mean arterial pressure. To determine whether enhancing vasodilation across the leg results in higher O2 delivery and leg VO2 during near-maximal and maximal exercise in humans, seven men performed two maximal incremental exercise tests on the cycle ergometer. In random order, one test was performed with and one without (control exercise) infusion of ATP (8 mg in 1 ml of isotonic saline solution) into the right femoral artery at a rate of 80 microg.kg body mass-1.min-1. During near-maximal exercise (92% of VO2 peak), the infusion of ATP increased leg vascular conductance (+43%, P<0.05), leg blood flow (+20%, 1.7 l/min, P<0.05), and leg O2 delivery (+20%, 0.3 l/min, P<0.05). No effects were observed on leg or systemic VO2. Leg O2 fractional extraction was decreased from 85+/-3 (control) to 78+/-4% (ATP) in the infused leg (P<0.05), while it remained unchanged in the left leg (84+/-2 and 83+/-2%; control and ATP; n=3). ATP infusion at maximal exercise increased leg vascular conductance by 17% (P<0.05), while leg blood flow tended to be elevated by 0.8 l/min (P=0.08). However, neither systemic nor leg peak VO2 values where enhanced due to a reduction of O2 extraction from 84+/-4 to 76+/-4%, in the control and ATP conditions, respectively (P<0.05). In summary, the VO2 of the skeletal muscles of the lower extremities is not enhanced by limb vasodilation at near-maximal or maximal exercise in humans. The fact that ATP infusion resulted in a reduction of O2 extraction across the exercising leg suggests a vasodilating effect of ATP on less-active muscle fibers and other noncontracting tissues and that under normal conditions these regions are under high vasoconstrictor influence to ensure the most efficient flow distribution of the available cardiac output to the most active muscle fibers of the exercising limb.
Resumo:
[EN] This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.
Resumo:
[EN] We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 +/- 0.7, 69 +/- 0.9, and 72 +/- 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 +/- 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 +/- 1.4, 76.9 +/- 1.7, and 79.3 +/- 1.6%, respectively. After 8W, SaO2 in lowlanders was not significantly different from that in Aymaras (82.7 +/- 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2 after 8W: 59 +/- 4, 58 +/- 4, and 52 +/- 4 l x min x l O2(-1), respectively. The ventilatory equivalent of O2 reached levels not different from that of Aymaras (51 +/- 3 l x min x l O2(-1)). However, increases in exercise alveolar Po2 and PaO2 with acclimatization had no net effect on alveolar-arterial Po2 difference in lowlanders (10 +/- 1.3, 11 +/- 1.5, and 10 +/- 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 +/- 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.
Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists
Resumo:
[EN] The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.