3 resultados para dissolved inorganic nitrogen and phosphorus

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] In the frame of the restoration of natural populations of Cymodocea nodosa of the Canary Islands, seeds are being collected at natural populations where germination is rather scarce and seasonal after dormancy. We have developed techniques of propagation in vitro of collected seeds, consisting in forced seed germination and seedlings propagation to obtain mature 20-30 cm plantlet, which eventually are being used for restoration. In order to improve the developed methodology, several experiments were conducted to adjust conditions for seed storage under different regimes of temperature without loosing germinative potential, fertilize during propagation with controlled released NPK fertilizers, and increase growth by dipping seedlings in solutions of the most common plant hormones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de doctorado: Acuicultura

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] We used 5-yr concomitant data of tracer distribution from the BATS (Bermuda Time-series Study) and ESTOC (European Station for Time-Series in the Ocean, Canary Islands) sites to build a 1-D tracer model conservation including horizontal advection, and then compute net production and shallow remineralization rates for both sites. Our main goal was to verify if differences in these rates are consistent with the lower export rates of particulate organic carbon observed at ESTOC. Net production rates computed below the mixed layer to 110m from April to December for oxygen, dissolved inorganic carbon and nitrate at BATS (1.34±0.79 molO2 m?2, ?1.73±0.52 molCm?2 and ?125±36 mmolNm?2) were slightly higher for oxygen and carbon compared to ESTOC (1.03±0.62 molO2 m?2, ?1.42±0.30 molCm?2 and ?213±56 mmolNm?2), although the differences were not statistically significant. Shallow remineralization rates between 110 and 250m computed at ESTOC (?3.9±1.0 molO2 m?2, 1.53±0.43 molCm?2 and 38±155 mmolNm?2) were statistically higher for oxygen compared to BATS (?1.81±0.37 molO2 m?2, 1.52± 0.30 molCm?2 and 147±43 mmolNm?2). The lateral advective flux divergence of tracers, which was more significant at ESTOC, was responsible for the differences in estimated oxygen remineralization rates between both stations. According to these results, the differences in net production and shallow remineralization cannot fully explain the differences in the flux of sinking organic matter observed between both stations, suggesting an additional consumption of nonsinking organic matter at ESTOC.