4 resultados para dimorphism

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] To determine if there is a gender dimorphism in the expression of leptin receptors (OB-R170, OB-R128 and OB-R98) and the protein suppressor of cytokine signaling 3 (SOCS3) in human skeletal muscle, the protein expression of OB-R, perilipin A, SOCS3 and alpha-tubulin was assessed by Western blot in muscle biopsies obtained from the m. vastus lateralis in thirty-four men (age = 27.1+/-6.8 yr) and thirty-three women (age = 26.7+/-6.7 yr). Basal serum insulin concentration and HOMA were similar in both genders. Serum leptin concentration was 3.4 times higher in women compared to men (P<0.05) and this difference remained significant after accounting for the differences in percentage of body fat or soluble leptin receptor. OB-R protein was 41% (OB-R170, P<0.05) and 163% (OB-R128, P<0.05) greater in women than men. There was no relationship between OB-R expression and the serum concentrations of leptin or 17beta-estradiol. In men, muscle OB-R128 protein was inversely related to serum free testosterone. In women, OB-R98 and OB-R128 were inversely related to total serum testosterone concentration, and OB-R128 to serum free testosterone concentration. SOCS3 protein expression was similar in men and women and was not related to OB-R. In women, there was an inverse relationship between the logarithm of free testosterone and SCOS3 protein content in skeletal muscle (r = -0.46, P<0.05). In summary, there is a gender dimorphism in skeletal muscle leptin receptors expression, which can be partly explained by the influence of testosterone. SOCS3 expression in skeletal muscle is not up-regulated in women, despite very high serum leptin concentrations compared to men. The circulating form of the leptin receptor can not be used as a surrogate measure of the amount of leptin receptors expressed in skeletal muscles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]The age and growth of the sand sole Pegusa lascaris from the Canarian Archipelago were studied from 2107 fish collected between January 2005 and December 2007. To find an appropriate method for age determination, sagittal otoliths were observed by surface-reading and frontal section and the results were compared. The two methods did not differ significantly in estimated age but the surface-reading method is superior in terms of cost and time efficiency. The sand sole has a moderate life span, with ages up to 10 years recorded. Individuals grow quickly in their first two years, attaining approximately 48% of their maximum standard length; after the second year, their growth rate drops rapidly as energy is diverted to reproduction. Males and females show dimorphism in growth, with females reaching a slightly greater length and age than males. Von Bertalanffy, seasonalized von Bertalanfy, Gompertz, and Schnute growth models were fitted to length-at-age data. Akaike weights for the seasonalized von Bertalanffy growth model indicated that the probability of choosing the correct model from the group of models used was >0.999 for males and females. The seasonalized von Bertalanffy growth parameters estimated were: L? = 309 mm standard length, k = 0.166 yr?1, t0 = ?1.88 yr, C = 0.347, and ts = 0.578 for males; and L? = 318 mm standard length, k = 0.164 yr?1, t0 = ?1.653 yr, C = 0.820, and ts = 0.691 for females. Fish standard length and otolith radius are closely correlated (R2 = 0.902). The relation between standard length and otolith radius is described by a power function (a = 85.11, v = 0.906)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Leptin and osteocalcin play a role in the regulation of the fat-bone axis and may be altered by exercise. To determine whether osteocalcin reduces fat mass in humans fed ad libitum and if there is a sex dimorphism in the serum osteocalcin and leptin responses to strength training, we studied 43 male (age 23.9 2.4 yr, mean +/- SD) and 23 female physical education students (age 23.2 +/- 2.7 yr). Subjects were randomly assigned to two groups: training (TG) and control (CG). TG followed a strength combined with plyometric jumps training program during 9 wk, whereas the CG did not train. Physical fitness, body composition (dual-energy X-ray absorptiometry), and serum concentrations of hormones were determined pre- and posttraining. In the whole group of subjects (pretraining), the serum concentration of osteocalcin was positively correlated (r = 0.29-0.42, P < 0.05) with whole body and regional bone mineral content, lean mass, dynamic strength, and serum-free testosterone concentration (r = 0.32). However, osteocalcin was negatively correlated with leptin concentration (r = -0.37), fat mass (r = -0.31), and the percent body fat (r = -0.44). Both sexes experienced similar relative improvements in performance, lean mass (+4-5%), and whole body (+0.78%) and lumbar spine bone mineral content (+1.2-2%) with training. Serum osteocalcin concentration was increased after training by 45 and 27% in men and women, respectively (P < 0.05). Fat mass was not altered by training. Vastus lateralis type II MHC composition at the start of the training program predicted 25% of the osteocalcin increase after training. Serum leptin concentration was reduced with training in women. In summary, while the relative effects of strength training plus plyometric jumps in performance, muscle hypertrophy, and osteogenesis are similar in men and women, serum leptin concentration is reduced only in women. The osteocalcin response to strength training is, in part, modulated by the muscle phenotype (MHC isoform composition). Despite the increase in osteocalcin, fat mass was not reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]GH is main regulator of body growth and composition, somatic development, intermediate metabolism and gender-dependent dimorphism in mammals. The liver is a direct target of estrogens because it expresses estrogen receptors which are connected with development, lipid metabolism and insulin sensitivity, hepatic carcinogenesis, protection from drug-induced toxicity and fertility. In addition, estrogens can modulate GH actions in liver by acting centrally, regulating pituitary GH secretion, and, peripherally, by modulating GHR-JAK2-STAT5 signalling pathway