9 resultados para dense seismic array
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes. Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100% density that are evaluated by Barron et al. (1994). Our software is available from the Internet.
Resumo:
[EN] We present an energy based approach to estimate a dense disparity map from a set of two weakly calibrated stereoscopic images while preserving its discontinuities resulting from image boundaries. We first derive a simplified expression for the disparity that allows us to estimate it from a stereo pair of images using an energy minimization approach. We assume that the epipolar geometry is known, and we include this information in the energy model. Discontinuities are preserved by means of a regularization term based on the Nagel-Enkelmann operator. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method The resulting parabolic problem has a unique solution. In order to reduce the risk to be trapped within some irrelevant local minima during the iterations, we use a focusing strategy based on a linear scalespace. Experimental results on both synthetic and real images arere presented to illustrate the capabilities of this PDE and scale-space based method.
Resumo:
[EN]An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is caried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar, viscoelastic and poroelastic media is used.
Resumo:
[EN]The dynamic throug-soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM-FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernouilli beams.
Resumo:
[EN]When analysing the seismic response of pile groups, a vertically-incident wavefiel is usually employed even though it doesnot necessarily correspond to the worst case scenario. This work aims to study the influence of both type of seismic body wave and its angle of incidence on the dynamic response of pile foundations.
Resumo:
[EN] This work studies the structure-soil-structure interaction (SSSI) effects on the dynamic response of nearby piled structures under obliquely-incident shear waves. For this purpose, a three-dimensional, frequency-domain, coupled boundary element-finite (BEM-FEM) model is used to analyse the response of configuration of three buildings aligned parallel to the horizontal component of the wave propagation direction.
Resumo:
[EN] This paper aims to contribute to clarify whether the use of battered piles has a positive or negative influence on the dynamic response of deep foundations and superstructures. For this purpose, the dynamic response of slender and non-slender structures supported on several configurations of 2X2 and 3X3 pile groups including battered elements is obtained through a procedure based on a substructuring model whick takes soil-structure interaction into account.
Resumo:
[EN]This paper presents a simple and stable procedure for the estimation of periods and dampings of piled shear buildings taking soil-structure interaction into account. A substructuring methodology that incluedes the three-dimensional character of the foundations is used.