4 resultados para deduced optical model parameters

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Ensemble forecasting [1] is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in [2]. The wind _eld forecasting is based on a mass-consistent model and a log-linear wind pro_le using as input data the resulting forecast wind from Harmonie [3], a Non-Hydrostatic Dynamic model. The mass-consistent model parameters are estimated by using genetic algorithms [4]. The mesh is generated using the meccano method [5] and adapted to the geometry. The main source of uncertainties in this model is the parameter estimation and the in- trinsic uncertainties of the Harmonie Model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Ensemble forecasting is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in. The wind field forecasting is based on a mass-consistent model and a log-linear wind profile using as input data the resulting forecast wind from Harmonie, a Non-Hydrostatic Dynamic model used experimentally at AEMET with promising results. The mass-consistent model parameters are estimated by using genetic algorithms. The mesh is generated using the meccano method and adapted to the geometry…

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] In this paper we present a new model for optical flow calculation using a variational formulation which preserves discontinuities of the flow much better than classical methods. We study the Euler-Lagrange equations asociated to the variational problem. In the case of quadratic energy, we show the existence and uniqueness of the corresponding evolution problem. Since our method avoid linearization in the optical flow constraint, it can recover large displacement in the scene. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales.