2 resultados para constant rate infusion
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Fe(II) oxidation kinetics were studied in seawater and in seawater enriched with exudates excreted by Phaeodactylum tricornutum as an organic ligand model. The exudates produced after 2, 4, and 8 days of culture at 6.21 .. 107, 2.29 .. 108, and 4.98 .. 108 cell L?1 were selected. The effects of pH (7.2?8.2), temperature (5?35 ºC), and salinity (10?36.72) on the Fe(II) oxidation rate were studied. All the data were compared with the results for seawater without exudates (control). The Fe(II) rate constant decreased as a function of culture time and cell concentration in the culture at different pH, temperature, and salinity. All the experimental data obtained in this study were fitted to a polynomial function in order to quantify the fractional contribution of the organic exudates from the diatoms to the Fe(II) oxidation rate in natural seawater. Experimental results showed that the organic exudates excreted by P. tricornutum affect Fe(II) oxidation, increasing the lifetime of Fe(II) in seawater. A kinetic model approach was carried out to account for the speciation of each Fe(II) type together with its contribution to the overall rate.
Resumo:
[EN] As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7-9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041+/-0.018 at sea-level to 0.080+/-0.018%hr(-1) (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052+/-0.019 at sea-level to 0.059+/-0.010%hr(-1) (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51+/-0.21 at sea level to 2.73+/-0.13 micromolkg(-1)min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24+/-0.20 at sea level and 2.43+/-0.13 micromolkg(-1)min(-1) (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.