3 resultados para cloud-based applications
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]Vision-based applications designed for humanmachine interaction require fast and accurate hand detection. However, previous works on this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects to locate. This paper presents an approach which changes the detection target without limiting the number of detected gestures. Using a cascade classifier we detect hands based on their wrists. With this approach, we introduce two main contributions: (1) a reliable segmentation, independently of the gesture being made and (2) a training phase faster than previous cascade classifier based methods. The paper includes experimental evaluations with different video streams that illustrate the efficiency and suitability for perceptual interfaces.
Resumo:
[EN]The use of new technologies in order to step up the inter- action between humans and machines is the main proof that faces are important in videos. Therefore we suggest a novel Face Video Database for development, testing and veri cation of algorithms related to face- based applications and to facial recognition applications. In addition of facial expression videos, the database includes body videos. The videos are taken by three di erent cameras, working in real time, without vary- ing illumination conditions.
Resumo:
[EN]Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.