5 resultados para catch-up growth
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]Octopus vulgaris is a potential candidate to diversify European aquaculture for its rapid growth and high market prices (Vaz Pires et al. 2004). One factor affecting industrial development of octopus culture is sexual maturation under rearing conditions. Octopus females can lose up to 30-60% of their initial body weight during egg-laying (Iglesias et al., 2000) and die after the paralarvae hatch (Guerra,1992), while a correlation between males death and spermatic sac depletion has being recently reported by Estefanell et al. (2010b). The present experiment discusses the effect of three different sex ratios on growth, sexual maturation and survival in O. Vulgaris. Conclusions: Discarded bogue from fish farms could be used as alternative diet for the final stage of O. vulgaris ongrowing ; Male segregation would maximize biomass increment ; Under the conditions described, sex ratios close to 1:1 produced higher biomass increment than 4:1
Resumo:
[EN] Octopus vulgaris is a suitable candidate to diversify marine aquaculture (Iglesias et al., 2000; Vaz Pires et al. 2004). Actually, wild sub-adults are on-growing in floating cages showing promising results (Chapela et al., 2006; Rodríguez et al., 2006). Even though octopus industrial development is still limited, mainly associated to the dependence of wild catch individuals for ongrowing (Iglesias et al., 2007) and a lack of an appropriate formulated diet (García García and Cerezo, 2006). In addition, essential macronutrient requirements for this species are still not well known. Used of discarded bogue as single food for Octopus on-growth results in similar growth than co-fed diets with the crab (Portunus pelagic). FA content of Muscle and DG showed important ARA content, suggesting the important functions of this FA in this specie.
Resumo:
[EN]The age and growth of the sand sole Pegusa lascaris from the Canarian Archipelago were studied from 2107 fish collected between January 2005 and December 2007. To find an appropriate method for age determination, sagittal otoliths were observed by surface-reading and frontal section and the results were compared. The two methods did not differ significantly in estimated age but the surface-reading method is superior in terms of cost and time efficiency. The sand sole has a moderate life span, with ages up to 10 years recorded. Individuals grow quickly in their first two years, attaining approximately 48% of their maximum standard length; after the second year, their growth rate drops rapidly as energy is diverted to reproduction. Males and females show dimorphism in growth, with females reaching a slightly greater length and age than males. Von Bertalanffy, seasonalized von Bertalanfy, Gompertz, and Schnute growth models were fitted to length-at-age data. Akaike weights for the seasonalized von Bertalanffy growth model indicated that the probability of choosing the correct model from the group of models used was >0.999 for males and females. The seasonalized von Bertalanffy growth parameters estimated were: L? = 309 mm standard length, k = 0.166 yr?1, t0 = ?1.88 yr, C = 0.347, and ts = 0.578 for males; and L? = 318 mm standard length, k = 0.164 yr?1, t0 = ?1.653 yr, C = 0.820, and ts = 0.691 for females. Fish standard length and otolith radius are closely correlated (R2 = 0.902). The relation between standard length and otolith radius is described by a power function (a = 85.11, v = 0.906)
Resumo:
[EN] OBJECTIVES: To investigate to what extent bone mass accrual is determined by physical activity and changes in lean, fat, and total body mass during growth. METHODS: Twenty six physically active and 16 age matched control boys were followed up for three years. All subjects were prepubertal at the start of the survey (mean (SEM) age 9.4 (0.3) years). The weekly physical activity of the active boys included compulsory physical education sessions (80-90 minutes a week), three hours a week of extracurricular sports participation, and occasional sports competitions at weekends. The physical activity of the control group was limited to the compulsory physical education curriculum. Bone mineral content (BMC) and areal density (BMD), lean mass, and fat mass were measured by dual energy x ray absorptiometry. RESULTS: The effect of sports participation on femoral bone mass accrual was remarkable. Femoral BMC and BMD increased twice as much in the active group as in the controls over the three year period (p < 0.05). The greatest correlation was found between the increment in femoral bone mass and the increment in lean mass (BMC r = 0.67 and BMD r = 0.69, both p < 0.001). Multiple regression analysis revealed enhancement in lean mass as the best predictor of the increment in femoral bone BMC (R = 0.65) and BMD (R = 0.69). CONCLUSIONS: Long term sports participation during early adolescence results in greater accrual of bone mass. Enhancement of lean mass seems to be the best predictor of this bone mass accumulation. However, for a given muscle mass, a greater level of physical activity is associated with greater bone mass and density in peripubertal boys.