5 resultados para aerossol atmosférico
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
Programa de Oceanografía física y Física aplicada
Resumo:
[ES]En este trabajo hemos estudiado la relación entre la deposición de polvo atmosférico, y la abundancia y tasas de fijación de nitrógeno asociadas a Trichodesmium y fijadores unicelulares en las Islas Canarias. La fijación de nitrógeno asociada a los fijadores unicelulares aumentó entre el 86 y el 92% tras un evento de deposición de polvo atmosférico, mientras que la asociada a Trichodesmium disminuyó entre el 34 y el 92%. Tras el evento de deposición de polvo, aumentó la abundancia de fijadores unicelulares y la mayoría de éstos aparecieron asociados a partículas de materia orgánica. Creemos que esta estrategia les permite ligar el hierro que contiene el polvo y así poder usar este nutriente limitante.
Resumo:
[ES] Hoy en día es incuestionable que la actividad humana está induciendo perturbaciones climáticas con importantes consecuencias para la integridad del planeta. Cada hora emitimos a la atmósfera dos millones de toneladas de CO2, favoreciendo el calentamiento gradual de la Tierra. Los océanos constituyen uno de los principales destinos finales de este carbono antropogénico y la reserva más importante de carbono activo del planeta. Absorben cerca del 25% del CO2 emitido y almacenan inmensas cantidades de calor y humedad, amortiguando los cambios climáticos pero prolongándolos en el tiempo una vez que se producen; es decir, actúan como la memoria del planeta, con un efecto retardado pero continuo. Como impacto de esta actividad, las aguas de los océanos están aumentando en temperatura y acidez y disminuyendo en concentración de oxígeno. El océano captura y transfiere CO2 desde la atmósfera al océano profundo (donde el carbono puede quedar almacenado durante cientos de años) por medio de dos procesos fundamentales: por diferencias en la presión parcial del CO2 entre la atmósfera y la superficie del mar, en función de la solubilidad del gas en el agua (bomba física o de solubilidad), y por captación de CO2 , debida a la fotosíntesis de los productores primarios (esencialmente el fitoplancton microscópico) y su transformación en materia orgánica y transporte al fondo del océano (bomba biológica). La bomba física contribuye en un 30-40% a los valores de CO2 en el agua, mientras que el resto se debe a la bomba biológica. Sin embargo, el análisis de series recientes (últimos 50 años) parece indicar que el océano está perdiendo eficiencia en la captura de CO2, lo que estaría acelerando su acumulación en la atmósfera. Una de las hipótesis postuladas para explicar esta pérdida de eficiencia es que la productividad marina global está disminuyendo, debido al aumento de estratificación en las aguas oceánicas. Esta hipótesis, no obstante, es controvertida, ya que algunos estudios recientes indican que la producción primaria marina se ha incrementado en las últimas décadas debido al forzamiento atmosférico (inducido por el calentamiento global), que ha favorecido un aumento de procesos de mezcla y afloramiento en las regiones de mayor productividad marina del planeta. En esta charla revisaremos los estudios más recientes sobre el impacto de las fluctuaciones multidecadales en la biomasa de fitoplancton, los cambios en sus grupos funcionales y su repercusión en la producción primaria. Revisaremos también los estudios sobre registros paleoclimáticos del fitoplancton, para analizar variaciones seculares en la productividad marina y poder extender los cambios contemporáneos a proyecciones futuras asociadas al cambio climático.
Resumo:
ES]Los giros subtropicales abarcan grandes áreas del océano donde la productividad del ecosistema se sostiene a través del reciclado de materia y energía. En estas aguas, la interacción entre la disponibilidad de recursos y la presión de los niveles tróficos superiores determina la dinámica de la comunidad planctónica. Sin embargo, en aguas subtropicales, el conocimiento de la variabilidad temporal o el papel de los diferentes componentes de la comunidad dentro de la red trófica es bastante limitado. En esta tesis se evalúa la variabilidad a corto plazo de los diferentes componentes de la comunidad planctónica. El picoplancton dominó la comunidad salvo durante la época productiva, en la que los organismos autótrofos de mayor tamaño desempeñaron un papel destacado. Nuestros resultados muestran como la variabilidad estacional está relacionada con fuerzas “bottom-up”, mientras que los procesos “top-down” dominan a una escala de tiempo más corta. Encontramos que el microzooplancton ejerce un gran impacto sobre la comunidad microbiana, en organismos tanto autótrofos como heterótrofos. Además, observamos un acoplamiento muy estrecho entre estos consumidores y sus presas. Otro mecanismo que regula la estructura planctónica es la depredación de los migradores verticales sobre el zooplancton. Así, la variabilidad del mesozooplancton epipelágico está controlada por un ciclo de depredación vinculado a la iluminación de la luna. En este trabajo realizamos una simulación de esta variabilidad con la que se obtuvieron valores de mortalidad comunitaria de los que derivamos el flujo de carbono activo hacia la zona mesopelágica. Estos valores calculados de transporte activo de carbono son del mismo orden de magnitud que el flujo gravitacional en aguas subtropicales. En el Atlántico noreste la comunidad marina también podría estar influenciada por las tormentas de polvo sahariano que ocurren con gran frecuencia en la zona. En este sentido, se estudió la respuesta de la comunidad planctónica en un período de deposición de polvo atmosférico de gran intensidad, en el año 2010, sin observar una clara respuesta en términos de producción primaria. Por el contrario, la biomasa de diatomeas y mesozooplancton sí se vio aumentada en gran medida tras el paso de una fuerte tormenta de polvo del Sáhara, mientras que los organismos autótrofos de menor tamaño se vieron afectados negativamente. Los resultados de esta tesis suponen una contribución importante para entender la dinámica planctónica tan compleja en los ecosistemas subtropicales, y además, pone de manifiesto la necesidad de llevar a cabo muestreos oceanográficos a escalas de tiempo más cortas.