1 resultado para Weighted average power tests
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (39)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Boston University Digital Common (2)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (24)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (66)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (15)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (4)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (83)
- Instituto Politécnico do Porto, Portugal (7)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (28)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (39)
- Queensland University of Technology - ePrints Archive (91)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (21)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (109)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (47)
- Universidade Complutense de Madrid (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universidade Metodista de São Paulo (4)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (3)
- Université de Montréal, Canada (12)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (4)
- University of Michigan (3)
- University of Queensland eSpace - Australia (19)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
[EN] Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity.