11 resultados para Uptake nutrients

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] In the frame of the restoration of natural populations of Cymodocea nodosa of the Canary Islands, seeds are being collected at natural populations where germination is rather scarce and seasonal after dormancy. We have developed techniques of propagation in vitro of collected seeds, consisting in forced seed germination and seedlings propagation to obtain mature 20-30 cm plantlet, which eventually are being used for restoration. In order to improve the developed methodology, several experiments were conducted to adjust conditions for seed storage under different regimes of temperature without loosing germinative potential, fertilize during propagation with controlled released NPK fertilizers, and increase growth by dipping seedlings in solutions of the most common plant hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the exercise model allows for an adequate oxygen delivery (blood flow x Ca,O2), with only a minor role of Pa,O2 per se, when Pa,O2 is more than 55 mmHg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The purpose of this investigation was to determine the contribution of muscle O(2) consumption (mVO2) to pulmonary O(2) uptake (pVO2) during both low-intensity (LI) and high-intensity (HI) knee-extension exercise, and during subsequent recovery, in humans. Seven healthy male subjects (age 20-25 years) completed a series of LI and HI square-wave exercise tests in which mVO2 (direct Fick technique) and pVO2 (indirect calorimetry) were measured simultaneously. The mean blood transit time from the muscle capillaries to the lung (MTTc-l) was also estimated (based on measured blood transit times from femoral artery to vein and vein to artery). The kinetics of mVO2 and pVO2 were modelled using non-linear regression. The time constant (tau) describing the phase II pVO2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + tau) for mVO2 kinetics for LI (30 +/- 3 vs 30 +/- 3 s) but was slightly higher (P < 0.05) for HI (32 +/- 3 vs 29 +/- 4 s); the responses were closely correlated (r = 0.95 and r = 0.95; P < 0.01) for both intensities. In recovery, agreement between the responses was more limited both for LI (36 +/- 4 vs 18 +/- 4 s, P < 0.05; r = -0.01) and HI (33 +/- 3 vs 27 +/- 3 s, P > 0.05; r = -0.40). MTTc-l was approximately 17 s just before exercise and decreased to 12 and 10 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II pVO2 kinetics reflect mVO2 kinetics during exercise but not during recovery where caution in data interpretation is advised. Increased mVO2 probably makes a small contribution to during the first 15-20 s of exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The aim of this study was to determine the influence of activity performed during the recovery period on the aerobic and anaerobic energy yield, as well as on performance, during high-intensity intermittent exercise (HIT). Ten physical education students participated in the study. First they underwent an incremental exercise test to assess their maximal power output (Wmax) and VO2max. On subsequent days they performed three different HITs. Each HIT consisted of four cycling bouts until exhaustion at 110% Wmax. Recovery periods of 5 min were allowed between bouts. HITs differed in the kind of activity performed during the recovery periods: pedaling at 20% VO2max (HITA), stretching exercises, or lying supine. Performance was 3-4% and aerobic energy yield was 6-8% (both p < 0.05) higher during the HITA than during the other two kinds of HIT. The greater contribution of aerobic metabolism to the energy yield during the high-intensity exercise bouts with active recovery was due to faster VO2 kinetics (p< 0.01) and a higher VO2peak during the exercise bouts preceded by active recovery (p < 0.05). In contrast, the anaerobic energy yield (oxygen deficit and peak blood lactate concentrations) was similar in all HITs. Therefore, this study shows that active recovery facilitates performance by increasing aerobic contribution to the whole energy yield turnover during high-intensity intermittent exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea level). With hypoxia, exercise PaO2 dropped to 31-34 mmHg and arterial O2 content (CaO2) was reduced by 35% (P < 0.001). Forty-one percent of the reduction in CaO2 was explained by the lower inspired O2 pressure (PiO2) in hypoxia, whereas the rest was due to the impairment of the pulmonary gas exchange, as reflected by the higher alveolar-arterial O2 difference in hypoxia (P < 0.05). Hypoxia caused a 47% decrease in VO2 max (a greater fall than accountable by reduced CaO2). Peak cardiac output decreased by 17% (P < 0.01), due to equal reductions in both peak heart rate and stroke VOlume (P < 0.05). Peak leg blood flow was also lower (by 22%, P < 0.01). Consequently, systemic and leg O2 delivery were reduced by 43 and 47%, respectively, with hypoxia (P < 0.001) correlating closely with VO2 max (r = 0.98, P < 0.001). Therefore, three main mechanisms account for the reduction of VO2 max in severe acute hypoxia: 1) reduction of PiO2, 2) impairment of pulmonary gas exchange, and 3) reduction of maximal cardiac output and peak leg blood flow, each explaining about one-third of the loss in VO2 max.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The red seaweed Hypnea spinella (Gigartinales, Rhodophyta), was cultured at laboratory scale under three different CO2 conditions, non-enriched air (360 ppm CO2)and CO2-enriched air at two final concentrations (750 and 1,600 ppm CO2), in order to evaluate the influence of increased CO2 concentrations on growth, photosynthetic capacity, nitrogen removal efficiency, and chemical cellular composition. Average specific growth rates of H. spinella treated with 750 and 1,600 ppm CO2-enriched air increased by 85.6% and 63.2% compared with non-enriched air cultures. CO2 reduction percentages close to 12% were measured at 750 ppm CO2 with respect to 5% and 7% for cultures treated with air and 1,600 ppm CO2, respectively. Maximum photosynthetic rates were enhanced significantly for high CO2 treatments, showing Pmax values 1.5-fold higher than that for air-treated cultures. N–NH4+ consumption rates were also faster for algae growing at 750 and 1,600 ppm CO2 than that for non-enriched air cultures. As a consequence of these experimental conditions, soluble carbohydrates increased and soluble protein contents decreased in algae treated with CO2-enriched air. However, internal C and N contents remained constant at the different CO2 concentrations. No significant differences in data obtained with both elevated CO2 treatments, under the assayed conditions, indicate that H. spinella is saturated at dissolved inorganic carbon concentrations close by twice the actual atmospheric levels. The results show that increased CO2 concentrations might be considered a key factor in order to improve intensively cultured H. spinella production yields and carbon and nitrogen bioremediation efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de Doctorado, Acuicultura: Producción controlada de organismos acuáticos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Máster Oficial en Cultivos Marinos. Trabajo presentado como requisito parcial para la obtención del Título de Máster Oficial en Cultivos Marinos, otorgado por la Universidad de Las Palmas de Gran Canaria (ULPGC), el Instituto Canario de Ciencias Marinas (ICCM), y el Centro Internacional de Altos Estudios Agronómicos Mediterráneos de Zaragoza (CIHEAM)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabajo dirigido por Juan Luis Gómez Pinchetti y Ricardo Haroun Tabraue