9 resultados para Upper Jurassic

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Vertical distributions of turbulent energy dissipation rates and fluorescence were measured simultaneously with a high-resolution micro-profiler in four different oceanographic regions, from temperate to polar and from coastal to open waters settings. High fluorescence values, forming a deep chlorophyll maximum (DCM), were often located in weakly stratified portions of the upper water column, just below layers with maximum levels of turbulent energy dissipation rate. In the vicinity of the DCM, a significant negative relationship between fluorescence and turbulent energy dissipation rate was found. We discuss the mechanisms that may explain the observed patterns of planktonic biomass distribution within the ocean mixed layer, including a vertically variable diffusion coefficient and the alteration of the cells sinking velocity by turbulent motion. These findings provide further insight into the processes controlling the vertical distribution of the pelagic community and position of the DCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] We describe the coupling between upper ocean layer variability and size-fractionated phytoplankton distribution in the non-nutrient-limited Bransfield Strait region (BS) of Antarctica. For this purpose we use hydrographic and size-fractionated chlorophyll a data from a transect that crossed 2 fronts and an eddy, together with data from 3 stations located in a deeply mixed region, the Antarctic Sound (AS). In the BS transect, small phytoplankton (<20 μm equivalent spherical diameter [ESD]) accounted for 80% of total chl a and their distribution appeared to be linked to cross-frontal variability. On the deepening upper mixed layer (UML) sides of both fronts we observed a deep subducting column-like structure of small phytoplankton biomass. On the shoaling UML sides of both fronts, where there were signs of restratification, we observed a local shallow maximum of small phytoplankton biomass. We propose that this observed phytoplankton distribution may be a response to the development of frontal vertical circulation cells. In the deep, turbulent environment of the AS, larger phytoplankton (>20 μm ESD) accounted for 80% of total chl a. The proportion of large phytoplankton increases as the depth of the upper mixed layer (ZUML), and the corresponding rate of vertical mixing, increases. We hypothesize that this change in phytoplankton composition with varying ZUML is related to the competition for light, and results from modification of the light regime caused by vertical mixing.