1 resultado para Trees -- Breeding
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (66)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (29)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (112)
- Boston University Digital Common (1)
- Brock University, Canada (9)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (26)
- CentAUR: Central Archive University of Reading - UK (54)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (35)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (1)
- Digital Howard @ Howard University | Howard University Research (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (67)
- Helda - Digital Repository of University of Helsinki (22)
- Indian Institute of Science - Bangalore - Índia (25)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (35)
- Publishing Network for Geoscientific & Environmental Data (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (42)
- Queensland University of Technology - ePrints Archive (35)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (164)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- South Carolina State Documents Depository (1)
- Universidad Politécnica de Madrid (18)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
[EN] Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity.