4 resultados para Summer resorts

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The vertical distribution (0?550 m) of zooplankton biomass, and indices of respiration (electron transfer system [ETS]) and structural growth (aminoacyltRNA synthetases activity [AARS]), were studied in waters off the Antarctic Peninsula during the austral summer of 2000. The dominant species were the copepod Metridia gerlachei and the euphausiid Euphausia superba. We observed a vertical krill/copepod substitution in the water column. The zooplankton biomass in the layer at a depth of 200?500 m was of the same magnitude as the biomass in the layer at a depth of 0?200 m, indicating that biomass in the mesopelagic zone is an important fraction of the total zooplankton in Antarctic waters. The metabolic rates of the zooplankton community were sustained by less than 0.5% of the primary production in the area, suggesting that microplankton or small copepods are the main food source. Neither food availability nor predation seemed to control mesozooplankton biomass. The wide time lag between the abundance peak of the dominant copepod (M. gerlachei) and the phytoplankton bloom is suggested to be the main explanation for the low summer zooplankton biomass observed in these waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Mesozooplankton organisms (>250 μm) were sampled at two stations (inner and outer Bay) in the Bay of Cádiz between May and July 2008. Samples were analysed by means of a semi-automated technique in order to give a preliminary view of the mesoozooplankton community structure in the Bay, based on taxonomic diversity and biomass distribution among size classes. The abundance of organisms increased from May to July in accordance with the increase in temperature and Chlorophyll a (Chla) concentrations. Abundances were higher in the outer Bay station, where Chla concentrations are greater and the water column is more stable. The community changed from being meroplankton- to holoplankton-based due to an increase of Calanoida and especially Cladocera individuals (mainly Peniliaavirostris), which are known to peak acutely in the summer. The analysis of Normalised Biomass-Size spectra revealed fairly steep slopes (average -1.3) and relatively high departures from steady state (r2 = 0.8 – 0.94), expectable in a coastal system such as the Bay of Cádiz were disturbance factors are introduced from benthic and tidal processes, together with anthropogenic pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]A new one-dimensional model of DMSP/DMS dynamics (DMOS) is developed and applied to the Sargasso Sea in order to explain what drives the observed dimethylsulfide (DMS) summer paradox: a summer DMS concentration maximum concurrent with a minimum in the biomass of phytoplankton, the producers of the DMS precursor dimethylsulfoniopropionate (DMSP). Several mechanisms have been postulated to explain this mismatch: a succession in phytoplankton species composition towards higher relative abundances of DMSP producers in summer; inhibition of bacterial DMS consumption by ultraviolet radiation (UVR); and direct DMS production by phytoplankton due to UVR-induced oxidative stress. None of these hypothetical mechanisms, except for the first one, has been tested with a dynamic model. We have coupled a new sulfur cycle model that incorporates the latest knowledge on DMSP/DMS dynamics to a preexisting nitrogen/carbon-based ecological model that explicitly simulates the microbial-loop. This allows the role of bacteria in DMS production and consumption to be represented and quantified. The main improvements of DMOS with respect to previous DMSP/DMS models are the explicit inclusion of: solar-radiation inhibition of bacterial sulfur uptakes; DMS exudation by phytoplankton caused by solar-radiation-induced stress; and uptake of dissolved DMSP by phytoplankton. We have conducted a series of modeling experiments where some of the DMOS sulfur paths are turned “off” or “on,” and the results on chlorophyll-a, bacteria, DMS, and DMSP (particulate and dissolved) concentrations have been compared with climatological data of these same variables. The simulated rate of sulfur cycling processes are also compared with the scarce data available from previous works. All processes seem to play a role in driving DMS seasonality. Among them, however, solar-radiation-induced DMS exudation by phytoplankton stands out as the process without which the model is unable to produce realistic DMS simulations and reproduce the DMS summer paradox.