3 resultados para Subsurface drainage.
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Vertical distributions of turbulent energy dissipation rates and fluorescence were measured simultaneously with a high-resolution micro-profiler in four different oceanographic regions, from temperate to polar and from coastal to open waters settings. High fluorescence values, forming a deep chlorophyll maximum (DCM), were often located in weakly stratified portions of the upper water column, just below layers with maximum levels of turbulent energy dissipation rate. In the vicinity of the DCM, a significant negative relationship between fluorescence and turbulent energy dissipation rate was found. We discuss the mechanisms that may explain the observed patterns of planktonic biomass distribution within the ocean mixed layer, including a vertically variable diffusion coefficient and the alteration of the cells sinking velocity by turbulent motion. These findings provide further insight into the processes controlling the vertical distribution of the pelagic community and position of the DCM.
Resumo:
[EN]Based on hydrographic sections carried out during the last decade in the Canary region at 29° 10′N, we show that there has been a statistically significant rise in temperature and salinity on isobars between 1500 and 2300 db. The maximum increase, found at 1600 db, is occurring at a rate of 0.29°C and 0.047 per decade. Isobaric change decomposition into changes on neutral surfaces and changes due to the vertical displacement of the isoneutrals was performed. Results reveal that the lower part of North Atlantic Central Water (NACW) cooled and freshened on neutral surfaces, suggesting changes in the freshwater fluxes at the outcropping region. However, the signal in deep waters (1500–2300 db) was principally due to a downward displacement of the isoneutrals, although water mass modification is observed in the range of Mediterranean Water (MW) influence.