1 resultado para Strongly Semantic Information
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Filtro por publicador
- Aberdeen University (4)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (37)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (20)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (38)
- Central European University - Research Support Scheme (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (4)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (1)
- Open University Netherlands (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (13)
- Queensland University of Technology - ePrints Archive (582)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (12)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scielo Uruguai (1)
- Universidad de Alicante (7)
- Universidad Politécnica de Madrid (49)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Queensland eSpace - Australia (15)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
- WestminsterResearch - UK (2)
Relevância:
Resumo:
The automatic extraction of biometric descriptors of anonymous people is a challenging scenario in camera networks. This task is typically accomplished making use of visual information. Calibrated RGBD sensors make possible the extraction of point cloud information. We present a novel approach for people semantic description and re-identification using the individual point cloud information. The proposal combines the use of simple geometric features with point cloud features based on surface normals.