3 resultados para Stokesian Dynamics Method
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Background: Spain has gone from a surplus to a shortage of medical doctors in very few years. Medium and long-term planning for health professionals has become a high priority for health authorities. Methods: We created a supply and demand/need simulation model for 43 medical specialties using system dynamics. The model includes demographic, education and labour market variables. Several scenarios were defined. Variables controllable by health planners can be set as parameters to simulate different scenarios. The model calculates the supply and the deficit or surplus. Experts set the ratio of specialists needed per 1000 inhabitants with a Delphi method. Results: In the scenario of the baseline model with moderate population growth, the deficit of medical specialists will grow from 2% at present (2800 specialists) to 14.3% in 2025 (almost 21 000). The specialties with the greatest medium-term shortages are Anesthesiology, Orthopedic and Traumatic Surgery, Pediatric Surgery, Plastic Aesthetic and Reparatory Surgery, Family and Community Medicine, Pediatrics, Radiology, and Urology. Conclusions: The model suggests the need to increase the number of students admitted to medical school. Training itineraries should be redesigned to facilitate mobility among specialties. In the meantime, the need to make more flexible the supply in the short term is being filled by the immigration of physicians from new members of the European Union and from Latin America.
Resumo:
[EN]We have recently introduced a new strategy, based on the meccano method [1, 2], to construct a T-spline parameterization of 2D and 3D geometries for the application of iso geometric analysis [3, 4]. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between the objects and the parametric domain, i.e. the meccano. The key of the method lies in de_ning an isomorphic transformation between the parametric and physical T-mesh _nding the optimal position of the interior nodes, once the meccano boundary nodes are mapped to the boundary of the physical domain…
Resumo:
[EN]This work presents a novel approach to solve a two dimensional problem by using an adaptive finite element approach. The most common strategy to deal with nested adaptivity is to generate a mesh that represents the geometry and the input parameters correctly, and to refine this mesh locally to obtain the most accurate solution. As opposed to this approach, the authors propose a technique using independent meshes : geometry, input data and the unknowns. Each particular mesh is obtained by a local nested refinement of the same coarse mesh at the parametric space…