3 resultados para Space analysis
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.
Resumo:
[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.
Resumo:
[EN]The application of the Isogeometric Analysis (IA) with T-splines [1] demands a partition of the parametric space, C, in a tiling containing T-junctions denominated T-mesh. The T-splines are used both for the geometric modelization of the physical domain, D, and the basis of the numerical approximation. They have the advantage over the NURBS of allowing local refinement. In this work we propose a procedure to construct T-spline representations of complex domains in order to be applied to the resolution of elliptic PDE with IA. In precedent works [2, 3] we accomplished this task by using a tetrahedral parametrization…