7 resultados para Sound recognition

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] Aplicación para dispositivos móviles Android que, ayudada por acelerómetros y giroscopios, da soporte al desarrollo de actividades físicas que necesiten un plan de trabajo basado en repeticiones y rutinas de ejercicios. El App ayuda a contabilizar las repeticiones de cada ejercicio, informando al usuario mediante sonido, para que este pueda mantener un ritmo continuo. El App permite la realización de ejercicios individuales hasta alcanzar un número objetivo de repeticiones o repeticiones libres; o permite la realización de una serie de ejercicios que forman parte de una rutina de ejercicios. Es posible crear rutinas de ejercicios personalizadas, eliminar rutinas o editar rutinas ya existentes (añadiendo o eliminando ejercicios y repeticiones). El reconocimiento de movimientos para la contabilización de repeticiones se realiza usando el valor absoluto del vector de aceleración generado a partir de los datos del acelerómetro del dispositivo. Este método, aunque no permite la precisión de reconocimiento de movimientos que permitiría el modelado tridimensional de la aceleración lineal del dispositivo, permite un reconocimiento menos computacionalmente costoso, ignorando ciertos factores exteriores y sin la necesidad de entrenamiento previo de la aplicación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Gender recognition has achieved impressive results based on the face appearance in controlled datasets. Its application in the wild and large datasets is still a challenging task for researchers. In this paper, we make use of classical techniques to analyze their performance in controlled and uncontrolled condition respectively with the LFW and MORPH datasets. For both sets the benchmarking protocol follows the 5-fold cross-validation proposed by the BEFIT challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]This paper summarizes the proposal made by the SIANI team for the LifeCLEF 2015 Fish task. The approach makes use of standard detection techniques, applying a multiclass SVM based classifier on large enough Regions Of Interest (ROIs) automatically extracted from the provided video frames. The selection of the detection and classification modules is based on the best performance achieved for the validation dataset consisting of 20 annotated videos. For that dataset, the best classification achieved for an ideal detection module, reaches an accuracy around 40%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70's. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]In this paper a system for face recognition from a tabula rasa (i.e. blank slate) perspective is described. A priori, the system has the only ability to detect automatically faces and represent them in a space of reduced dimension. Later, the system is exposed to over 400 different identities, observing its recognition performance evolution. The preliminary results achieved indicate on the one side that the system is able to reject most of unknown individuals after an initialization stage.