1 resultado para Second-order inclusion probabilities
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (19)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Boston University Digital Common (9)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CaltechTHESIS (25)
- Cambridge University Engineering Department Publications Database (45)
- CentAUR: Central Archive University of Reading - UK (13)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (179)
- Cochin University of Science & Technology (CUSAT), India (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons - Michigan Tech (1)
- Diposit Digital de la UB - Universidade de Barcelona (6)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (202)
- Instituto Politécnico do Porto, Portugal (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (102)
- Queensland University of Technology - ePrints Archive (111)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (30)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (8)
- University of Queensland eSpace - Australia (9)
- University of Washington (1)
- WestminsterResearch - UK (4)
Resumo:
[EN] We present in this paper a variational approach to accurately estimate simultaneously the velocity field and its derivatives directly from PIV image sequences. Our method differs from other techniques that have been presented in the literature in the fact that the energy minimization used to estimate the particles motion depends on a second order Taylor development of the flow. In this way, we are not only able to compute the motion vector field, but we also obtain an accurate estimation of their derivatives. Hence, we avoid the use of numerical schemes to compute the derivatives from the estimated flow that usually yield to numerical amplification of the inherent uncertainty on the estimated flow. The performance of our approach is illustrated with the estimation of the motion vector field and the vorticity on both synthetic and real PIV datasets.