13 resultados para Robot Soccer
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
[EN] PURPOSE: To determine the volume and degree of asymmetry of the rectus abdominis muscle (RA) in professional soccer players. METHODS: The volume of the RA was determined using magnetic resonance imaging (MRI) in 15 professional male soccer players and 6 non-active male control subjects. RESULTS: Soccer players had 26% greater RA volume than controls (P<0.05), due to hypertrophy of both the dominant (28% greater volume, P<0.05) and non-dominant (25% greater volume, P<0.01) sides, after adjusting for age, length of the RA muscle and body mass index (BMI) as covariates. Total volume of the dominant side was similar to the contralateral in soccer players (P = 0.42) and in controls (P = 0.75) (Dominant/non-dominant = 0.99, in both groups). Segmental analysis showed a progressive increase in the degree of side-to-side asymmetry from the first lumbar disc to the pubic symphysis in soccer players (r = 0.80, P<0.05) and in controls (r = 0.75, P<0.05). The slope of the relationship was lower in soccer players, although this trend was not statistically significant (P = 0.14). CONCLUSIONS: Professional soccer is associated with marked hypertrophy of the rectus abdominis muscle, which achieves a volume that is 26% greater than in non-active controls. Soccer induces the hypertrophy of the non-dominant side in proximal regions and the dominant side in regions closer to pubic symphysis, which attenuates the pattern of asymmetry of rectus abdominis observed in non-active population. It remains to be determined whether the hypertrophy of rectus abdominis in soccer players modifies the risk of injury.
Resumo:
[EN] PURPOSE: To determine the volume and degree of asymmetry of iliopsoas (IL) and gluteal muscles (GL) in tennis and soccer players. METHODS: IL and GL volumes were determined using magnetic resonance imaging (MRI) in male professional tennis (TP) and soccer players (SP), and in non-active control subjects (CG) (n = 8, 15 and 6, respectively). RESULTS: The dominant and non-dominant IL were hypertrophied in TP (24 and 36%, respectively, P<0.05) and SP (32 and 35%, respectively, P<0.05). In TP the asymmetric hypertrophy of IL (13% greater volume in the non-dominant than in the dominant IL, P<0.01) reversed the side-to-side relationship observed in CG (4% greater volume in the dominant than in the contralateral IL, P<0.01), whilst soccer players had similar volumes in both sides (P = 0.87). The degree of side-to-side asymmetry decreased linearly from the first lumbar disc to the pubic symphysis in TP (r = -0.97, P<0.001), SP (r = -0.85, P<0.01) and CG (r = -0.76, P<0.05). The slope of the relationship was lower in SP due to a greater hypertrophy of the proximal segments of the dominant IL. Soccer and CG had similar GL volumes in both sides (P = 0.11 and P = 0.19, for the dominant and contralateral GL, respectively). GL was asymmetrically hypertrophied in TP. The non-dominant GL volume was 20% greater in TP than in CG (P<0.05), whilst TP and CG had similar dominant GL volumes (P = 0.14). CONCLUSIONS: Tennis elicits an asymmetric hypertrophy of IL and reverses the normal dominant-to-non-dominant balance observed in non-active controls, while soccer is associated to a symmetric hypertrophy of IL. Gluteal muscles are asymmetrically hypertrophied in TP, while SP display a similar size to that observed in controls. It remains to be determined whether the different patterns of IL and GL hypertrophy may influence the risk of injury.
Resumo:
Celebrado el 24 de mayo en el Edificio de Informática y Matemáticas de la ULPGC
Resumo:
[EN]Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform.
Resumo:
[ES]This paper describes some simple but useful computer vision techniques for human-robot interaction. First, an omnidirectional camera setting is described that can detect people in the surroundings of the robot, giving their angular positions and a rough estimate of the distance. The device can be easily built with inexpensive components. Second, we comment on a color-based face detection technique that can alleviate skin-color false positives. Third, a simple head nod and shake detector is described, suitable for detecting affirmative/negative, approval/dissaproval, understanding/disbelief head gestures.
Resumo:
[EN]Social robots are receiving much interest in the robotics community. The most important goal for such robots lies in their interaction capabilities. An attention system is crucial, both as a filter to center the robot’s perceptual resources and as a mean of letting the observer know that the robot has intentionality. In this paper a simple but flexible and functional attentional model is described. The model, which has been implemented in an interactive robot currently under development, fuses both visual and auditive information extracted from the robot’s environment, and can incorporate knowledge-based influences on attention.
Resumo:
The physical appearance and behavior of a robot is an important asset in terms of Human-Computer Interaction. Multimodality is also fundamental, as we humans usually expect to interact in a natural way with voice, gestures, etc. People approach complex interaction devices with stances similar to those used in their interaction with other people. In this paper we describe a robot head, currently under development, that aims to be a multimodal (vision, voice, gestures,...) perceptual user interface.
Resumo:
[EN]In this paper we will present Eldi, a mobile robot that has been in opertation at the Elder Museum of Science and Technology at Las Palmas de Gran Canaria since december 1999. This is an ongoing project that was organized in three different stages of which only the first one has been accomplished. The initial phase, termed "The Player", the second stage, actually under develpment, has been called "The Cicerone" and in the final phase, termed "The Vagabond", in which Eldi will be allowed to move erratically across the Museum. This paper will focus on the accomplished first stage to succinctly describe the physical robot and the environment and demos developed. Finally we will summarize some important lessons learnt.
Resumo:
[EN]In this paper we will present Eldi, a mobile robot that has been in daily operation at the Elder Museum of Science and Technology at Las Palmas de Gran Canaria since December 1999. This is an ongoing project that was organized in three di erent stages, describing here the one that has been accomplished. The initial phase, termed \The Player", the second stage, actually under development, has been called "The Cicerone" and in a nal phase, termed \The Vagabond", Eldi will be allowed to move erratically across the Museum. This paper will focus on the accomplished rst stage to succinctly describe the physical robot and the environment and demos developed. Finally we will summarize some important lessons learnt.
Resumo:
In this paper we will present Eldi, a mobile robot that has been in daily operation at the Elder Museum of S ien e and Te hnology at Las Palmas de Gran Canaria sin e last De ember. This is an ongoing pro je t that was organized in three di erent stages of whi h only the rst one has been a omplished. The initial phase, termed \The Player", the se ond stage, a tually under development, has been alled "The Ci erone" and in a nal phase, termed \The Vagabond", Eldi will be allowed to move errati ally a ross the Museum...
Resumo:
[EN]Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.