2 resultados para RECOMBINANT ANTIGENS

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment with recombinant human erythropoietin (rhEpo) induces a rise in blood oxygen-carrying capacity (CaO(2)) that unequivocally enhances maximal oxygen uptake (VO(2)max) during exercise in normoxia, but not when exercise is carried out in severe acute hypoxia. This implies that there should be a threshold altitude at which VO(2)max is less dependent on CaO(2). To ascertain which are the mechanisms explaining the interactions between hypoxia, CaO(2) and VO(2)max we measured systemic and leg O(2) transport and utilization during incremental exercise to exhaustion in normoxia and with different degrees of acute hypoxia in eight rhEpo-treated subjects. Following prolonged rhEpo treatment, the gain in systemic VO(2)max observed in normoxia (6-7%) persisted during mild hypoxia (8% at inspired O(2) fraction (F(I)O(2)) of 0.173) and was even larger during moderate hypoxia (14-17% at F(I)O(2) = 0.153-0.134). When hypoxia was further augmented to F(I)O(2) = 0.115, there was no rhEpo-induced enhancement of systemic VO(2)max or peak leg VO(2). The mechanism highlighted by our data is that besides its strong influence on CaO(2), rhEpo was found to enhance leg VO(2)max in normoxia through a preferential redistribution of cardiac output toward the exercising legs, whereas this advantageous effect disappeared during severe hypoxia, leaving augmented CaO(2) alone insufficient for improving peak leg O(2) delivery and VO(2). Finally, that VO(2)max was largely dependent on CaO(2) during moderate hypoxia but became abruptly CaO(2)-independent by slightly increasing the severity of hypoxia could be an indirect evidence of the appearance of central fatigue.