4 resultados para REACTION MODEL
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]This paper shows a finite element method for pollutant transport with several pollutant sources. An Eulerian convection–diffusion–reaction model to simulate the pollutant dispersion is used. The discretization of the different sources allows to impose the emissions as boundary conditions. The Eulerian description can deal with the coupling of several plumes. An adaptive stabilized finite element formulation, specifically Least-Squares, with a Crank-Nicolson temporal integration is proposed to solve the problem. An splitting scheme has been used to treat separately the transport and the reaction. A mass-consistent model has been used to compute the wind field of the problem…
Resumo:
[ES]Se considera un modelo de reacción-difusión para dos reactantes en presencia de un tercero, que actúa de catalizador. La escala temporal para el catalizador se compara con la de los reactantes y los coeficientes de difusión dependen solamente de la concentración en el estado de equilibrio del catalizador. Se realizan experimentos para diferentes cinéticas
Resumo:
[EN]In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. We apply our methodology to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain)...
Resumo:
[EN]This work presents the calibration and validation of an air quality finite element model applied to the surroundings of Jinamar electric power plant in Gran Canaria island (Spain). The model involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The main advantage of the model is the treatment of complex terrains that introduces an alternative to the standard implementation of current models. In addition, it improves the computational cost through the use of unstructured meshes...