3 resultados para Projections onto convex sets
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]This paper deals with the orthogonal projection (in the Frobenius sense) AN of the identity matrix I onto the matrix subspace AS (A ? Rn×n, S being an arbitrary subspace of Rn×n). Lower and upper bounds on the normalized Frobenius condition number of matrix AN are given. Furthermore, for every matrix subspace S ? Rn×n, a new index bF (A, S), which generalizes the normalized Frobenius condition number of matrix A, is defined and analyzed...
Resumo:
[EN]Often some interesting or simply curious points are left out when developing a theory. It seems that one of them is the existence of an upper bound for the fraction of area of a convex and closed plane area lying outside a circle with which it shares a diameter, a problem stemming from the theory of isoperimetric inequalities. In this paper such a bound is constructed and shown to be attained for a particular area. It is also shown that convexity is a necessary condition in order to avoid the whole area lying outside the circle
Resumo:
[EN]We analyze the best approximation