7 resultados para Person Tracking, Depth, Motion Detection
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform.
Resumo:
[EN]In this paper, a basic conceptual architecture aimed at the design of Computer Vision System is qualitatively described. The proposed architecture addresses the design of vision systems in a modular fashion using modules with three distinct units or components: a processing network or diagnostics unit, a control unit and a communications unit. The control of the system at the modules level is designed based on a Discrete Events Model. This basic methodology has been used to design a realtime active vision system for detection, tracking and recognition of people. It is made up of three functional modules aimed at the detection, tracking, recognition of moving individuals plus a supervision module.
Resumo:
[EN]Low cost real-time depth cameras offer new sensors for a wide field of applications apart from the gaming world. Other active research scenarios as for example surveillance, can take ad- vantage of the capabilities offered by this kind of sensors that integrate depth and visual information. In this paper, we present a system that operates in a novel application context for these devices, in troublesome scenarios where illumination conditions can suffer sudden changes. We focus on the people counting problem with re-identification and trajectory analysis.
Resumo:
[EN]This work presents a comparison among different focus measures used in the literature for autofocusing in a non previously explored application of face detection. This application has different characteristics to those where traditionally autofocus methods have been applied like microscopy or depth from focus. The aim of the work is to find if the best focus measures in traditional applications of autofocus have the same performance in face detection applications. To do that six focus measures has been studied in four different settings from the oldest to more recent ones.
Resumo:
[EN]This paper describes an approach for detection of frontal faces in real time (20-35Hz) for further processing. This approach makes use of a combination of previous detection tracking and color for selecting interest areas. On those areas, later facial features such as eyes, nose and mouth are searched based on geometric tests, appearance veri cation, temporal and spatial coherence. The system makes use of very simple techniques applied in a cascade approach, combined and coordinated with temporal information for improving performance. This module is a component of a complete system designed for detection, tracking and identi cation of individuals [1].
Resumo:
[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...
Resumo:
[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.