3 resultados para Orthogonal sampling
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] The information provided by the International Commission for the Conservation of Atlantic Tunas (ICCAT) on captures of skipjack tuna (Katsuwonus pelamis) in the central-east Atlantic has a number of limitations, such as gaps in the statistics for certain fleets and the level of spatiotemporal detail at which catches are reported. As a result, the quality of these data and their effectiveness for providing management advice is limited. In order to reconstruct missing spatiotemporal data of catches, the present study uses Data INterpolating Empirical Orthogonal Functions (DINEOF), a technique for missing data reconstruction, applied here for the first time to fisheries data. DINEOF is based on an Empirical Orthogonal Functions decomposition performed with a Lanczos method. DINEOF was tested with different amounts of missing data, intentionally removing values from 3.4% to 95.2% of data loss, and then compared with the same data set with no missing data. These validation analyses show that DINEOF is a reliable methodological approach of data reconstruction for the purposes of fishery management advice, even when the amount of missing data is very high.
Resumo:
[EN]This paper deals with the orthogonal projection (in the Frobenius sense) AN of the identity matrix I onto the matrix subspace AS (A ? Rn×n, S being an arbitrary subspace of Rn×n). Lower and upper bounds on the normalized Frobenius condition number of matrix AN are given. Furthermore, for every matrix subspace S ? Rn×n, a new index bF (A, S), which generalizes the normalized Frobenius condition number of matrix A, is defined and analyzed...
Resumo:
[EN]We analyze the best approximation