3 resultados para Orthogonal polynomials on the unit circle

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Often some interesting or simply curious points are left out when developing a theory. It seems that one of them is the existence of an upper bound for the fraction of area of a convex and closed plane area lying outside a circle with which it shares a diameter, a problem stemming from the theory of isoperimetric inequalities. In this paper such a bound is constructed and shown to be attained for a particular area. It is also shown that convexity is a necessary condition in order to avoid the whole area lying outside the circle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This paper deals with the orthogonal projection (in the Frobenius sense) AN of the identity matrix I onto the matrix subspace AS (A ? Rn×n, S being an arbitrary subspace of Rn×n). Lower and upper bounds on the normalized Frobenius condition number of matrix AN are given. Furthermore, for every matrix subspace S ? Rn×n, a new index bF (A, S), which generalizes the normalized Frobenius condition number of matrix A, is defined and analyzed...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]We present a new method, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance…