6 resultados para Optical images.
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
We analyse the influence of colour information in optical flow methods. Typically, most of these techniques compute their solutions using grayscale intensities due to its simplicity and faster processing, ignoring the colour features. However, the current processing systems have minimized their computational cost and, on the other hand, it is reasonable to assume that a colour image offers more details from the scene which should facilitate finding better flow fields. The aim of this work is to determine if a multi-channel approach supposes a quite enough improvement to justify its use. In order to address this evaluation, we use a multi-channel implementation of a well-known TV-L1 method. Furthermore, we review the state-of-the-art in colour optical flow methods. In the experiments, we study various solutions using grayscale and RGB images from recent evaluation datasets to verify the colour benefits in motion estimation.
Resumo:
The measurement of mesozooplankton biomass in the ocean requires the use of analytical procedures that destroy the samples. Alternatively, the development of methods to estimate biomass from optical systems and appropriate conversion factors could be a compromise between the accuracy of analytical methods and the need to preserve the samples for further taxonomic studies. The conversion of the body area recorded by an optical counter or a camera, by converting the digitized area of an organism into individual biomass, was suggested as a suitable method to estimate total biomass. In this study, crustacean mesozooplankton from subtropical waters were analyzed, and individual dry weight and body area were compared. The obtained relationships agreed with other measurements of biomass obtained from a previous study in Antarctic waters. Gelatinous mesozooplankton from subtropical and Antarctic waters were also sampled and processed for body area and biomass. As expected, differences between crustacean and gelatinous plankton were highly significant. Transparent gelatinous organisms have a lower dry weight per unit area. Therefore, to estimate biomass from digitized images, pattern recognition discerning, at least, between crustaceans and gelatinous forms is required.
Resumo:
[EN] We propose four algorithms for computing the inverse optical flow between two images. We assume that the forward optical flow has already been obtained and we need to estimate the flow in the backward direction. The forward and backward flows can be related through a warping formula, which allows us to propose very efficient algorithms. These are presented in increasing order of complexity. The proposed methods provide high accuracy with low memory requirements and low running times.In general, the processing reduces to one or two image passes. Typically, when objects move in a sequence, some regions may appear or disappear. Finding the inverse flows in these situations is difficult and, in some cases, it is not possible to obtain a correct solution. Our algorithms deal with occlusions very easy and reliably. On the other hand, disocclusions have to be overcome as a post-processing step. We propose three approaches for filling disocclusions. In the experimental results, we use standard synthetic sequences to study the performance of the proposed methods, and show that they yield very accurate solutions. We also analyze the performance of the filling strategies.
Resumo:
[EN] The seminal work of Horn and Schunck [8] is the first variational method for optical flow estimation. It introduced a novel framework where the optical flow is computed as the solution of a minimization problem. From the assumption that pixel intensities do not change over time, the optical flow constraint equation is derived. This equation relates the optical flow with the derivatives of the image. There are infinitely many vector fields that satisfy the optical flow constraint, thus the problem is ill-posed. To overcome this problem, Horn and Schunck introduced an additional regularity condition that restricts the possible solutions. Their method minimizes both the optical flow constraint and the magnitude of the variations of the flow field, producing smooth vector fields. One of the limitations of this method is that, typically, it can only estimate small motions. In the presence of large displacements, this method fails when the gradient of the image is not smooth enough. In this work, we describe an implementation of the original Horn and Schunck method and also introduce a multi-scale strategy in order to deal with larger displacements. For this multi-scale strategy, we create a pyramidal structure of downsampled images and change the optical flow constraint equation with a nonlinear formulation. In order to tackle this nonlinear formula, we linearize it and solve the method iteratively in each scale. In this sense, there are two common approaches: one that computes the motion increment in the iterations, like in ; or the one we follow, that computes the full flow during the iterations, like in. The solutions are incrementally refined ower the scales. This pyramidal structure is a standard tool in many optical flow methods.
Resumo:
[EN] The aim of this work is to propose a model for computing the optical flow in a sequence of images. We introduce a new temporal regularizer that is suitable for large displacements. We propose to decouple the spatial and temporal regularizations to avoid an incongruous formulation. For the spatial regularization we use the Nagel-Enkelmann operator and a newly designed temporal regularization. Our model is based on an energy functional that yields a partial differential equation (PDE). This PDE is embedded into a multipyramidal strategy to recover large displacements. A gradient descent technique is applied at each scale to reach the minimum.
Resumo:
[EN] In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes. Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100% density that are evaluated by Barron et al. (1994). Our software is available from the Internet.