6 resultados para OpenCV
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
Este tutorial pretende ser una guía para la elaboración de clasificadores basados en el esquema de Viola-Jones haciando uso de la biblioteca OpenCV
Resumo:
[ES] El presente TFG consiste en una aplicación para la detección de personas de cuerpo entero. La idea es aplicar este detector a las continuas imágenes recogidas en tiempo real a través de una web-cam, o de un archivo con formato de vídeo que se encuentre ubicado en el propio sistema. El código está escrito en C++. Para conseguir este objetivo nos basamos en el uso conjunto de dos sistemas de detección ya existentes: primero, OpenCV, mediante un método de histograma de gradientes orientados, el cual ya proporciona propiamente un detector de personas que será aplicado a cada una de las imágenes del stream de vídeo; por otro lado, el detector facial de la librería Encara que se aplica a cada una de las detecciones de supuestas personas obtenidas en el método de OpenCV, para comprobar si hay una cara en la supuesta persona detectada. En caso de ser así, y de haber una cara más o menos correctamente situada, determinamos que es realmente una persona. Para cada persona detectada se guardan sus datos de situación en la imagen, en una lista, para posteriormente compararlos con los datos obtenidos en frames anteriores, e intentar hacer un seguimiento de todas las personas. Visualmente se observaría como se va recuadrando cada persona con un color determinado aleatorio asignado a cada una, mientras se visualiza el vídeo. También se registra la hora y frame de aparición, y la hora y frame de salida, de cada persona detectada, quedando estos datos guardados tanto en un fichero de log, como en una base de datos. Los resultados son, bastante satisfactorios, aunque con posibilidades de mejora, ya que es un trabajo que permite combinar otras técnicas diferentes a las descritas. Debido a la complejidad de los métodos empleados se destaca la necesidad de alta capacidad de computación para poder ejecutar la aplicación en tiempo real sin ralentizaciones.
Resumo:
[ES] Este Trabajo de Fin de Grado describe el desarrollo de un prototipo para plataformas móviles, que permite determinar si un pez alcanza la talla mínima establecida para su consumo. Para ello se realiza la detección y segmentación de un pez, para posteriormente determinar si cumple con la talla mínima, utilizando como referencia una moneda de un euro para calibrar el tamaño. La detección se realiza aplicando la implementación del esquema de Viola-Jones, integrada en la librería OpenCV, creando una serie de detectores propios tanto para los peces como para la moneda. Asimismo se ha utilizado SDK del que dispone dicha librería para desarrollar la aplicación en plataforma móvil Android.
Resumo:
Permitida la difusión del código bajo los términos de la licencia BSD de tres cláusulas.
Resumo:
[ES]La reidentificación consiste en volver a identificar a un individuo/objeto que ya se ha detectado previamente desde distintas cámaras. En este proyecto se exploran diferentes técnicas para la reidentificación de personas. Se implementan y prueban técnicas que no requieren de aprendizaje previo para realizar una ordenación inicial, al ser este tipo de métodos los que mayor aplicación tienen en un escenario real. Así mismo se usan técnicas de reordenación sobre esta ordenación inicial utilizando la información de un operador humano, aplicando entre otros métodos aprendizaje semisupervisado. Para realizar todo el proceso y facilitar la combinación y automatización de las diversas técnicas se crea un framework denominado PyReID basado en Python y OpenCV, de software libre y disponible públicamente en Github.
Resumo:
[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.